综合智慧能源 ›› 2024, Vol. 46 ›› Issue (9): 28-36.doi: 10.3969/j.issn.2097-0706.2024.09.004
收稿日期:
2024-05-17
修回日期:
2024-06-12
出版日期:
2024-09-25
作者简介:
王晓燕(1986),女,工程师,从事新能源及储能方面的研究,15851869922@139.com;基金资助:
WANG Xiaoyan1(), WU Shuquan2(
)
Received:
2024-05-17
Revised:
2024-06-12
Published:
2024-09-25
Supported by:
摘要:
随着可再生能源技术的发展,源网荷储系统成为保证电力系统可靠性和稳定性的重要解决方案。合理的容量配置可优化投资成本、保证系统的供电可靠性并减少可再生能源的浪费,对提升系统性能和经济效益至关重要。提出了一种改进的粒子群优化(PSO)算法,结合可变惯性权重,增强算法的搜索能力和收敛速度,采用多目标优化,在保证供电可靠性、尽可能减少弃风弃光量的前提下,寻找投资成本最低的源荷储容量及功率配置方案。将所提算法应用于小岛源网荷储测试系统,并与典型优化算法进行比较。仿真结果表明,基于改进PSO算法的多目标优化方法不仅能够有效实现源网荷储系统的容量配置,而且收敛速度和解的质量都有显著提升,为电力系统规划和运行提供了一种新的优化工具。
中图分类号:
王晓燕, 吴书泉. 基于改进粒子群优化算法的源网荷储系统容量配置研究[J]. 综合智慧能源, 2024, 46(9): 28-36.
WANG Xiaoyan, WU Shuquan. Research on capacity allocation for source-grid-load-storage systems based on improved PSO[J]. Integrated Intelligent Energy, 2024, 46(9): 28-36.
[1] | 姜琦, 黄堃, 赵俊, 等. 基于遗传算法的主动配电网 “源网荷储”协调优化模型研究[J]. 电力与能源, 2020, 41(1): 1-5,19. |
JIANG Qi, HUANG Kun, ZHAO Jun, et al. Study on coordination optimization model of "source network load storage" of active distribution network based on genetic algorithm[J]. Power and Energy, 2020, 41(1): 1-5,19. | |
[2] | 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9. |
SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9. | |
[3] |
杨梅, 周喜超, 魏强, 等. 考虑经济效益目标的源网荷储综合能源系统动态最优能流优化研究[J]. 综合智慧能源, 2022, 44(11): 63-69.
doi: 10.3969/j.issn.2097-0706.2022.11.009 |
YANG Mei, ZHOU Xichao, WEI Qiang, et al. Study on dynamic optimal energy flow of a source-network-load-storage integrated energy system considering its economic benefit[J]. Integrated Intelligent Energy, 2022, 44(11): 63-69.
doi: 10.3969/j.issn.2097-0706.2022.11.009 |
|
[4] | 许洪强. 调控云架构及应用展望[J]. 电网技术, 2017, 41(10): 3104-3111. |
XU Hongqiang. Architecture of dispatching and control cloud and its application prospect[J]. Power System Technology, 2017, 41(10): 3104-3111. | |
[5] | 权然, 金国彬, 陈庆, 等. 源网荷储互动的直流配电网优化调度[J]. 电力系统及其自动化学报, 2021, 33(2): 41-50. |
QUAN Ran, JIN Guobin, CHEN Qing, et al. Optimal dispatch of DC distribution network with source network load storage interaction[J]. Proceedings of the CSU-EPSA, 2021, 33(2): 41-50. | |
[6] | 许洪强. 面向调控云的电力调度通用数据对象结构化设计及应用[J]. 电网技术, 2018, 42(7): 2248-2254. |
XU Hongqiang. Structured design and application of power dispatching universal data object for dispatching and control cloud[J]. Power System Technology, 2018, 42(7): 2248-2254. | |
[7] | 郝然, 艾芊, 肖斐. 基于多元大数据平台的用电行为分析构架研究[J]. 电力自动化设备, 2017, 37(8): 20-27. |
HAO Ran, AI Qian, XIAO Fei. Architecture based on multivariate big data platform for analyzing electricity consumption behavior[J]. Electric Power Automation Equipment, 2017, 37(8): 20-27. | |
[8] | 朱正元, 韦浩, 曾莉, 等. 基于网损最小的智能配电网 “源网荷”优化研究[J]. 浙江电力, 2020, 39(5): 61-65. |
ZHU Zhengyuan, WEI Hao, ZENG Li, et al. Optimization of "source network load" of intelligent distribution network based on minimum network loss[J]. Zhejiang Electric Power, 2020, 39(5): 61-65. | |
[9] | 谢飞, 夏锐. 基于动态差分和粒子群混合算法的含分布式电源配电网重构[J]. 黑龙江电力, 2018, 40(3): 221-226. |
XIE Fei, XIA Rui. Distribution network reconfiguration with distributed generation based on dynamic difference and particle swarm optimization[J]. Heilongjiang Electric Power, 2018, 40(3): 221-226. | |
[10] | 胡迪, 丁明, 毕锐, 等. 基于集群划分的网-源-储多目标两步规划[J]. 电力系统自动化, 2020, 44(2): 95-104. |
HU Di, DING Ming, BI Rui, et al. Two-step planning of grid-source-storage based on cluster partition[J]. Automation of Electric Power Systems, 2020, 44(2): 95-104. | |
[11] |
陆克, 李海山, 孟琳. 源网荷储互动调控对降低可再生能源发电弃电率的应用分析[J]. 储能科学与技术, 2020, 9(S1):39-44.
doi: 10.19799/j.cnki.2095-4239.2020.0201 |
LU Ke, LI Haishan, MENG Lin. Analysis of the reduction of discard rate for renewable energy power with "generation-grid-load-storage" interactive control[J]. Energy Storage Science and Technology, 2020, 9(S1):39-44.
doi: 10.19799/j.cnki.2095-4239.2020.0201 |
|
[12] | 李军, 陈利, 李华东, 等. 基于遗传算法的多机型多热源复杂热电负荷优化分配方法[J]. 节能技术, 2021, 39 (2):185-188. |
LI Jun, CHEN Li, LI Huadong, et al. Optimal allocation of complex thermal and electrical loads with multiple models and multiple heat sources based on genetic algorithms[J]. Energy Conservation Technology, 2021, 39(2):185-188. | |
[13] | 崔弘, 郭熠昀, 夏成军. 考虑环境效益的分布式电源优化配置研究[J]. 华东电力, 2010, 38(12): 1968-1971. |
CUI Hong, GUO Yiyun, XIA Chengjun. Research on optimal allocation of distributed generation by Considering Environmental Benefits[J]. East China Electric Power, 2010, 38(12): 1968-1971. | |
[14] | KENNEDY J, EBERHART R C. Particle swarm opti mization[C]// Proceedings of IEEE International Conference on Neural Networks,1995:1942-1948. |
[15] | EBERHART R C, SHI Y. A modified particle swarm optimizer[C]// Proceedings of IEEE International Conference on Evolutionary Computation, 1998: 69-73. |
[16] | CLERC M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[C]// Proceedings of the Congress on Evolutionary Computation, 1999 :1951-1957. |
[17] | TRELEA C I. The particle swarm optimization algorithm: Convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6): 317-325. |
[18] | , AJIBADE S S M, ADEGOKE O. Bibliometric survey on particle swarm optimization algorithms (2001—2021)[J]. Journal of Electrical and Computer Engineering, 2022: 3242949. |
[19] |
王鑫, 陈祖翠, 卞在平, 等. 基于粒子群优化算法的智慧微电网风光储容量优化配置[J]. 综合智慧能源, 2022, 44(6): 52-58.
doi: 10.3969/j.issn.2097-0706.2022.06.006 |
WANG Xin, CHEN Zucui, BIAN Zaiping, et al. Optimal allocation of a wind-PV-battery hybrid system in smart microgrid based on particle swarm optimization algorithm[J]. Integrated Intelligent Energy, 2022, 44(6): 52-58.
doi: 10.3969/j.issn.2097-0706.2022.06.006 |
|
[20] | SUKRITI T, ASHWANI K. Advances and bibliographic analysis of particle swarm optimization applications in electrical power system: Concepts and variants[J]. Evolutionary Intelligence, 2021, 16(1): 23-47. |
[21] | 穆朝絮, 张瑞民, 孙长银. 基于粒子群优化的非线性系统最小二乘支持向量机预测控制方法[J]. 控制理论与应用, 2010, 27(2): 164-168. |
MU Chaoxu, ZHANG Ruimin, SUN Changyin. LS-SVM predictive control based on PSO for nonlinear systems[J]. Control Theory & Applications, 2010, 27(2): 164-168. | |
[22] | 陈虹, 孔力, 赵党军. 基于粒子群优化算法的极限环极值搜索控制[J]. 控制与决策, 2011, 26(6): 811-815. |
CHEN Hong, KONG Li, ZHAO Dangjun. Particle swarm optimization-based extremum seeking control for limit cycle minimization[J]. Control and Decision, 2011, 26(6): 811-815. | |
[23] | NAPOLES G, GRAU I, BELLO R. Particle swarm optimization with random sampling in variable neighbourhoods for solving global minimization problems[C]// Proceedings of the 8th International Conference on Swarm Intelligence, 2012, 7461(1): 352-353. |
[24] | YAZDANI D, NASIRI B, SEPAS-MOGHADDAM A, et al. A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization[J]. Applied Soft Computing Journal, 2013, 13(4): 77-93. |
[25] |
ZHANG S, XU J, LEE L H, et al. Optimal computing budget allocation for particle swarm optimization in stochastic optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(2): 206-219.
doi: 10.1109/TEVC.2016.2592185 pmid: 29170617 |
[26] | 谭辉, 戴小剑, 田家俊, 等. 改进粒子群算法在含DG 配电系统可靠性评估中的应用[J]. 湖北民族学院学报(自然科学版), 2019, 37(1): 104-108. |
TAN Hui, DAI Xiaojian, TIAN Jiajun, et al. Application of improved particle swarm optimization in reliability evaluation of distribution system with DG[J]. Journal of Hubei University for Nationalities(Natural Sciences Edition), 2019, 37(1): 104-108. | |
[27] |
侯鲁洋, 葛磊蛟, 王飚, 等. 面向新型产消者的综合能源系统和电力市场研究[J]. 综合智慧能源, 2022, 44(12): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
HOU Luyang, GE Leijiao, WANG Biao, et al. Research on the integrated energy system and the electricity market towards new prosumers[J]. Integrated Intelligent Energy, 2022, 44(12): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
|
[28] | 汤奕, 孙大松, 周毅, 等. 含分布式电源的主配一体化电网日前-实时协调风险调度方法研究[J]. 智慧电力, 2020, 48(8):8-14,23. |
TANG Yi, SUN Dasong, ZHOU Yi, et al. Coordinated day- ahead and real-time risk dispatch method for main distribution integrated network containing distributed generation[J]. Smart Power, 2020, 48(8):8-14,23. | |
[29] |
胡祖源, 靳现林, 谭雅之, 等. 基于改进粒子群算法的分布式光伏及储能系统优化配置[J]. 综合智慧能源, 2023, 45(1): 49-57.
doi: 10.3969/j.issn.2097-0706.2023.01.006 |
HU Zuyuan, JIN Xianlin, TAN Yazhi, et al. Optimized configuration of distributed photovoltaic and energy storage system based on improved particle swarm algorithm[J]. Integrated Intelligent Energy, 2023, 45(1): 49-57.
doi: 10.3969/j.issn.2097-0706.2023.01.006 |
|
[30] |
黄银恒, 李猛, 庞毅, 等. 区域综合能源系统容量配置和调度策略优化方法研究[J]. 综合智慧能源, 2023, 45(6): 34-41.
doi: 10.3969/j.issn.2097-0706.2023.06.005 |
HUANG Yinheng, LI Meng, PANG Yi, et al. Research on optimization method for capacity allocation and scheduling strategy of regional integrated energy systems[J]. Integrated Intelligent Energy, 2023, 45(6): 34-41.
doi: 10.3969/j.issn.2097-0706.2023.06.005 |
[1] | 樊颜搏, 熊亚选, 李想, 田曦, 杨洋. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85. |
[2] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[3] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[4] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[5] | 张勋祥, 吴杰康, 孙烨桦, 彭其坚. 平抑海上风电波动的混合储能系统容量优化配置[J]. 综合智慧能源, 2024, 46(6): 54-65. |
[6] | 俞胜, 周霞, 沈希澄, 戴剑丰, 刘增稷. 考虑网络攻击影响的源网荷储系统风险评估[J]. 综合智慧能源, 2024, 46(5): 41-49. |
[7] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[8] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
[9] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[10] | 王永旭, 周天羽, 邓庚庚, 徐钢, 王卓. 配置吸收式热泵的热电联产机组厂级智能运行优化[J]. 综合智慧能源, 2024, 46(3): 20-28. |
[11] | 李益民, 董海鹰, 丁坤, 王金岩. 考虑长期负荷概率预测的储能多阶段优化配置[J]. 综合智慧能源, 2024, 46(2): 19-27. |
[12] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
[13] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[14] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[15] | 栗庆根, 孙娜, 董海鹰. 基于改进鲸鱼优化算法的共享储能优化配置研究[J]. 综合智慧能源, 2023, 45(9): 65-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||