综合智慧能源 ›› 2025, Vol. 47 ›› Issue (11): 36-51.doi: 10.3969/j.issn.2097-0706.2025.11.004

• 灵活资源调控与协同优化 • 上一篇    下一篇

构网型技术在微电网中的应用与发展综述

刘海涛a,b(), 张文霄a, 杨陈晨a, 马珺锴a, 乔治铭a, 夏洋a, 许伦a,*   

  1. a.南京工程学院 江苏省配电网智能技术与装备协同创新中心, 南京 211167
    b.南京工程学院 电力工程学院 南京 211167
  • 收稿日期:2025-05-12 修回日期:2025-08-11 出版日期:2025-10-20
  • 通讯作者: *许伦(1993),男,博士,从事微电网运行与控制关键技术方面的研究,2694909131@qq.com
  • 作者简介:刘海涛(1972),女,教授,博士,从事微电网运行与控制关键技术方面的研究,13851424346@163.com
    张文霄(2001),男,硕士生,从事构网型控制技术方面的研究,1220966050@qq.com
    杨陈晨(2002),女,硕士生,从事电动汽车参与电网调频技术方面的研究,2040646424@qq.com
    马珺锴(2000),男,硕士生,从事储能锂电池健康状态估计技术方面的研究,874256568@qq.com
    乔治铭(2001),男,硕士生,从事车网互动机制及信息安全研究等方面的研究,2643528388@qq.com
    夏洋(2002),男,硕士生,从事电力系统稳定运行控制方面的研究,xy1045037578@163.com
  • 基金资助:
    江苏省高等学校基础科学研究重大项目(22KJA470005)

Review on application and development of grid-forming technology in microgrids

LIU Haitaoa,b(), ZHANG Wenxiaoa, YANG Chenchena, MA Junkaia, QIAO Zhiminga, XIA Yanga, XU Luna,*   

  1. a. Nanjing Institute of Technology Collaborative Innovation Center for Intelligent Technology and Equipment of Distribution Networks Nanjing 211167, China
    b. Nanjing Institute of Technology School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
  • Received:2025-05-12 Revised:2025-08-11 Published:2025-10-20
  • Supported by:
    Major Project of Basic Scientific Research of Higher Education Institutions in Jiangsu Province(22KJA470005)

摘要:

在新型电力系统建设背景下,构网型技术已成为解决微电网惯量缺失、频率波动和电压失稳等核心问题的关键技术。系统梳理了构网型控制策略的技术原理与发展路径,并基于典型工程案例分析了构网型装备从示范验证到智能化发展的3个阶段;聚焦微电网孤岛运行、并网切换及多微网协同3大典型场景,深入探讨了构网型技术在提升系统稳定性方面的功能优势与实现机制;针对控制实时性、设备可靠性和经济性等现存挑战,提出了智能算法优化、新型拓扑开发和多能域协同等未来发展方向,为构网型技术在微电网中的规模化应用提供理论支撑。

关键词: 新能源并网, 微电网, 构网型控制, 构网型装备, 典型场景分析, 新型电力系统

Abstract:

Against the backdrop of the construction of a new-type power system, grid-forming technology has emerged as a crucial solution to the core challenges in microgrids, including inertia deficiency, frequency fluctuations, and voltage instability. The technical principles and development trajectories of grid-forming control strategies are systematically reviewed. Based on typical engineering cases, the three-stage evolution of grid-forming equipment from demonstration verification to intelligent development is analyzed. Focusing on three representative scenarios in microgrids, namely islanded operation, grid-connected switching, and multi-microgrid coordination, the functional advantages and implementation mechanisms of grid-forming technology in enhancing system stability are thoroughly investigated. To address existing challenges such as control real-time performance, equipment reliability, and economic efficiency, future development directions including intelligent algorithm optimization, novel topology development, and multi-energy domain coordination are proposed, which provide theoretical support for the large-scale application of grid-forming technology in microgrids.

Key words: new energy grid integration, microgrid, grid-forming control, grid-forming equipment, typical scenario analysis, new-type power system