综合智慧能源 ›› 2026, Vol. 48 ›› Issue (1): 13-22.doi: 10.3969/j.issn.2097-0706.2026.01.002

• AI 驱动的新能源功率预测与优化 • 上一篇    下一篇

基于CEEMDAN-DBO-VMD-TCN-BiGRU的短期风电功率预测

陈旭东(), 卞礼杰(), 马刚*(), 陈浩(), 詹孝升(), 彭乐瑶()   

  1. 南京师范大学 电气与自动化工程学院,南京 210023
  • 收稿日期:2025-07-03 修回日期:2025-09-05 出版日期:2026-01-25
  • 通讯作者: *马刚(1984),男,教授,博士,从事新能源发电及入网技术等方面的研究,nnumg2@njnu.edu.cn
  • 作者简介:陈旭东(2000),男,硕士生,从事功率预测方面的研究,2741928845@qq.com
    卞礼杰(2002),男,硕士生,从事功率预测方面的研究,2239749260@qq.com
    陈浩(2000),男,硕士生,从事综合能源系统优化调度方面的研究,3312266385@qq.com
    詹孝升(2002),男,硕士生,从事功率预测方面的研究,1478604982@qq.com
    彭乐瑶(2001),女,硕士生,从事功率预测方面的研究,1519393180@qq.com
  • 基金资助:
    江苏省碳达峰碳中和科技创新专项资金项目(BE2022003)

Short-term wind power prediction based on CEEMDAN-DBO-VMD-TCN-BiGRU

CHEN Xudong(), BIAN Lijie(), MA Gang*(), CHEN Hao(), ZHAN Xiaosheng(), PENG Leyao()   

  1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
  • Received:2025-07-03 Revised:2025-09-05 Published:2026-01-25
  • Supported by:
    Technological Innovation Special Fund Project for Carbon Peaking and Carbon Neutrality in Jiangsu Province(BE2022003)

摘要:

提升风电功率预测的准确性对于保障电网安全与稳定运行至关重要。然而,风电具有高度的随机性和波动性,传统预测方法在特征提取和建模能力方面存在不足。为此,提出一种融合完全自适应噪声集合经验模态分解(CEEMDAN)、蜣螂优化(DBO)算法、变分模态分解(VMD)、时间卷积网络(TCN)与双向门控循环单元(BiGRU)的短期风电功率预测模型CEEMDAN-DBO-VMD-TCN-BiGRU。利用CEEMDAN对原始风电功率数据进行分解,提取内在模态函数(IMF)以捕捉时间序列的关键特征;通过样本熵与K-means聚类将IMF划分为高频、中频和低频分量,选取高频分量采用DBO优化的VMD进行二次分解,以提高特征提取效果并降低计算复杂度;所有分量经归一化处理后输入TCN-BiGRU组合模型进行预测,各分量预测结果经叠加与反归一化处理获得最终预测值。试验结果显示,相较于对比模型,该模型的预测精度最优,验证了所提模型的有效性、稳定性和应用潜力。

关键词: 风电功率预测, 完全自适应噪声集合经验模态分解, 蜣螂优化算法, 变分模态分解, 样本熵, K-means聚类, 时间卷积网络, 双向门控循环单元

Abstract:

Improving the accuracy of wind power prediction is crucial for ensuring safe and stable operation of the power grid. However, wind power exhibits high randomness and volatility, and traditional prediction methods have limitations in feature extraction and modeling capabilities. Therefore,CEEMDAN-DBO-VMD-TCN-BiGRU, a short-term wind power prediction model integrating complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN), dung beetle optimizer(DBO)algorithm, variational mode decomposition(VMD), temporal convolutional network(TCN), and bidirectional gated recurrent unit(BiGRU) was proposed. CEEMDAN was used to decompose the original wind power data, extracting intrinsic mode functions(IMFs) to capture key features of the time series. The IMFs were divided into high-frequency, medium-frequency, and low-frequency components using sample entropy and K-means clustering. The high-frequency components were selected for secondary decomposition using DBO-optimized VMD to improve feature extraction effectiveness and reduce computational complexity. All components were normalized and then input into the TCN-BiGRU combined model for prediction. The prediction results of each component were superimposed and denormalized to obtain the final prediction value. Experimental results showed that compared with benchmark models, the proposed model had the best prediction accuracy, verifying its effectiveness, stability, and application potential.

Key words: wind power prediction, complete ensemble empirical mode decomposition with adaptive noise, dung beetle optimizer algorithm, variational mode decomposition, sample entropy, K-means clustering, temporal convolutional network, bidirectional gated recurrent unit

中图分类号: