华电技术 ›› 2021, Vol. 43 ›› Issue (11): 110-127.doi: 10.3969/j.issn.1674-1951.2021.11.013
马天增1,2(), 付铭凯1(
), 任婷1(
), 李鑫1,2,*(
)
收稿日期:
2021-07-19
修回日期:
2021-08-27
出版日期:
2021-11-25
通讯作者:
* 李鑫(1975—),男,山东枣庄人,研究员,博士生导师,博士,从事太阳能热化学制备燃料交叉科学;太阳能热发电技术中的应用基础;熔融盐吸热器传热、热应力与疲劳、动态仿真、非稳态测试方法;太阳能中高温热利用技术中的工程热物理问题等研究(E-mail: drlixin@mail.iee.ac.cn)。作者简介:
马天增(1993—),男,河南南阳人,在读博士研究生,从事高温太阳能热化学方面的研究(E-mail: matianzeng@mail.iee.ac.cn)。基金资助:
MA Tianzeng1,2(), FU Mingkai1(
), REN Ting1(
), LI Xin1,2,*(
)
Received:
2021-07-19
Revised:
2021-08-27
Published:
2021-11-25
摘要:
基于金属氧化物的两步法太阳能热化学循环可以生产清洁的燃料,具有理论效率高、二氧化碳零排放等优点,有望成为实现碳中和的有效途径,但存在太阳能到化学能能源转化效率不高的问题。从材料基对、反应器设计、多能互补系统优化等方面入手,着重分析了影响太阳能到化学能能源转化效率的因素。总结了材料基对研究的发展历程,指出了密度泛函方法和机器学习方法在材料基对筛选方面的重要作用。结合材料特性,分析了泡沫陶瓷/蜂窝结构反应器、粒子反应器和膜反应器的适用范围及优缺点,指出更优的孔隙率和合适的粒子半径可以加快材料基对的升温速率,并且可以有效减少热损失;同时,大规模可连续式设计可以实现对太阳能的高效利用。系统优化方面,综合分析了数字孪生等新技术在多能互补系统发挥的作用。最后,对高温太阳能热化学循环制备燃料技术未来的发展提出了建议。
中图分类号:
马天增, 付铭凯, 任婷, 李鑫. 基于金属氧化物的两步法太阳能热化学循环制备燃料研究现状与展望[J]. 华电技术, 2021, 43(11): 110-127.
MA Tianzeng, FU Mingkai, REN Ting, LI Xin. Review and prospects of two-step solar thermochemical cycle for preparing fuels based on metal oxides[J]. Huadian Technology, 2021, 43(11): 110-127.
表1
不同反应材料在热化学循环过程中产H2/CO表现
材料 | 还原温度/℃ | 氧化温度/℃ | 反应物 | H2/CO产量/(μmol·g-1) |
---|---|---|---|---|
La0.7Sr0.3Mn0.7Cr0.3O3 | 1 350 | 1 000 | H2O | 107 |
La0.4Ca0.6Mn0.6Al0.4O3 | 1 400 | 1 000 | H2O | 429 |
BaCe0.25Mn0.75O3 | 1 350 | 1 000 | H2O | 135 |
La0.5Sr0.5MnO3 | 1 400 | 1 000 | H2O | 195 |
La0.35Sr0.75MnO3 | 1 400 | 1 050 | H2O | 124 |
La0.6Ca0.4Mn0.8Ga0.2O3 | 1 300 | 900 | H2O | 401 |
La0.6Sr0.4CoO3 | 1 300 | 900 | H2O | 514 |
La0.6Ca0.4CoO3 | 1 300 | 900 | H2O | 587 |
CeO2 | 2 000 | 550 | H2O | 3 254 |
hercynite | 1 500 | 1 350 | H2O | 597 |
LaFe0.75Co0.25O3 | 1 300 | 1 000 | CO2 | 117 |
LaCoO3 | 1 300 | 1 000 | CO2 | 123 |
Ba0.5Sr0.5FeO3 | 1 000 | 1 000 | CO2 | 136 |
La0.6Sr0.4Co0.2Cr0.8O3 | 1 200 | 800 | CO2 | 157 |
La0.5Ca0.5MnO3 | 1 400 | 1 050 | CO2 | 210 |
La0.5Ba0.5MnO3 | 1 400 | 1 050 | CO2 | 185 |
La0.5Sr0.5Mn0.4Al0.6O3 | 1 400 | 1 050 | CO2 | 279 |
La0.5Sr0.5Mn0.83Mg0.17O3 | 1 400 | 1 050 | CO2 | 209 |
La0.5Sr0.5MnO3 | 1 400 | 1 050 | CO2 | 256 |
Y0.5Sr0.5MnO3 | 1 400 | 1 050 | CO2 | 101 |
La0.6Sr0.4Mn0.6Al0.4O3 | 1 400 | 1 000 | CO2 | 307 |
La0.6Ca0.4Mn0.6Al0.4O3 | 1 240 | 850 | CO2 | 230 |
La0.6Sr0.4Mn0.6Al0.4O3 | 1 240 | 850 | CO2 | 245 |
La0.5Sr0.5Mn0.95Sc0.05O3 | 1 400 | 1 100 | CO2 | 545 |
La0.6Sr0.4Mn0.8Fe0.2O3 | 1 350 | 1 000 | CO2 | 329 |
Y0.5Ca0.5MnO3 | 1 400 | 1 100 | CO2 | 671 |
CeO2 | 1 500 | 800 | CO2 | 348 |
[1] |
ZHENG Y, ZHANG W, LI Y, et al. Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies[J]. Nano Energy, 2017, 40:512-539.
doi: 10.1016/j.nanoen.2017.08.049 |
[2] |
SAADE E, BINGHAM C, CLOUGH D E, et al. Dynamics of a solar-thermal transport-tube reactor[J]. Chemical Engineering Journal, 2012, 213:272-285.
doi: 10.1016/j.cej.2012.09.117 |
[3] |
WANG Z, ROBERTS R R, NATERER G F, et al. Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies[J]. International Journal of Hydrogen Energy, 2012, 37(21):16287-16301.
doi: 10.1016/j.ijhydene.2012.03.057 |
[4] |
SOLARSKA R, JURCZAKOWSKI R, AUGUSTYNSKI J. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte[J]. Nanoscale, 2012, 4(5):1553-1556.
doi: 10.1039/c2nr11573e |
[5] |
YANG L, W-FLEUNG W. Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells[J]. Advanced Materials, 2011, 23(39):4559-4562.
doi: 10.1002/adma.201102717 |
[6] |
SMESTAD G P, STEINFELD A. Review: Photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts[J]. Industrial and Engineering Chemistry Research, 2012, 51(37):11828-11840.
doi: 10.1021/ie3007962 |
[7] |
MA T, WANG L, CHANG C, et al. A comparative thermodynamic analysis of isothermal and non-isothermal CeO2-based solar thermochemical cycle with methane-driven reduction[J]. Renewable Energy, 2019, 143:915-921.
doi: 10.1016/j.renene.2019.05.047 |
[8] |
XIAO L, WU S Y, LI Y R. Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions[J]. Renewable Energy, 2012, 41:1-12.
doi: 10.1016/j.renene.2011.11.023 |
[9] |
GIACONIA A, SAU S, FELICI C, et al. Hydrogen production via sulfur-based thermochemical cycles Part 2: Performance evaluation of Fe2O3-based catalysts for the sulfuric acid decomposition step[J]. International Journal of Hydrogen Energy, 2011, 36(11):6496-6509.
doi: 10.1016/j.ijhydene.2011.02.137 |
[10] |
SIEGEL N P, MILLER J E, ERMANOSKI I, et al. Factors affecting the efficiency of solar driven metal oxide thermochemical cycles[J]. Industrial and Engineering Chemistry Research, 2013, 52(9):3276-3286.
doi: 10.1021/ie400193q |
[11] |
NICODEMUS J H. Technological learning and the future of solar H2: A component learning comparison of solar thermochemical cycles and electrolysis with solar PV[J]. Energy Policy, 2018, 120:100-109.
doi: 10.1016/j.enpol.2018.04.072 |
[12] |
TRAYNOR A J, JENSEN R J. Direct solar reduction of CO2 to fuel: First prototype results[J]. Industrial and Engineering Chemistry Research, 2002, 41(8):1935-1939.
doi: 10.1021/ie010871x |
[13] |
NAKAMURA T. Hydrogen production from water utilizing solar heat at high temperatures[J]. Solar Energy, 1977, 19(5):467-475.
doi: 10.1016/0038-092X(77)90102-5 |
[14] |
KONG H, HAO Y, JIN H. Isothermal versus two-temperature solar thermochemical fuel synjournal: A comparative study[J]. Applied Energy, 2018, 228:301-308.
doi: 10.1016/j.apenergy.2018.05.099 |
[15] |
ERMANOSKI I, MILLER J E, ALLENDORF M D. Efficiency maximization in solar-thermochemical fuel production: Challenging the concept of isothermal water splitting[J]. Physical Chemistry Chemical Physics, 2014, 16(18):8418-8427.
doi: 10.1039/C4CP00978A |
[16] |
CARRILLO R J, SCHEFFE J R. Advances and trends in redox materials for solar thermochemical fuel production[J]. Solar Energy, 2017, 156:3-20.
doi: 10.1016/j.solener.2017.05.032 |
[17] |
FAROOQUI A E, PICA A M, MAROCCO P, et al. Assessment of kinetic model for ceria oxidation for chemical-looping CO2 dissociation[J]. Chemical Engineering Journal, 2018, 346:171-181.
doi: 10.1016/j.cej.2018.04.041 |
[18] |
STEINFELD A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: A review[J]. Materials Today, 2014, 17(7):341-348.
doi: 10.1016/j.mattod.2014.04.025 |
[19] |
ABANADES S, VILLAFAN-VIDALES H I. CO2 and H2O conversion to solar fuels via two-step solar thermochemical looping using iron oxide redox pair[J]. Chemical Engineering Journal, 2011, 175:368-375.
doi: 10.1016/j.cej.2011.09.124 |
[20] |
HUANG X, YUAN Y, ZHANG H Y, et al. Solar thermochemical hydrogen production using metallic oxides[J]. Energ Source Part A, 2017, 39(3):257-263.
doi: 10.1080/15567036.2013.878769 |
[21] |
ALXNEIT I. Assessing the feasibility of separating a stoichiometric mixture of zinc vapor and oxygen by a fast quench——Model calculations[J]. Solar Energy, 2008, 82(11):959-964.
doi: 10.1016/j.solener.2008.05.009 |
[22] |
ZHU X, WEI Y G, WANG H, et al. Ce-Fe oxygen carriers for chemical-looping steam methane reforming[J]. International Journal of Hydrogen Energy, 2013, 38(11):4492-4501.
doi: 10.1016/j.ijhydene.2013.01.115 |
[23] |
KRENZKE P T, FOSHEIM J R, DAVIDSON J H. Solar fuels via chemical-looping reforming[J]. Solar Energy, 2017, 156:48-72.
doi: 10.1016/j.solener.2017.05.095 |
[24] |
KUBICEK M, BORK A H, RUPP J L M. Perovskite oxides: A review on a versatile material class for solar-to-fuel conversion processes[J]. Journal of Materials Chemistry A, 2017, 5(24):11983-12000.
doi: 10.1039/C7TA00987A |
[25] |
CHUAYBOON S, ABANADES S, RODAT S. Syngas production via solar-driven chemical looping methane reforming from redox cycling of ceria porous foam in a volumetric solar reactor[J]. Chemical Engineering Journal, 2019, 356:756-770.
doi: 10.1016/j.cej.2018.09.072 |
[26] |
ABANADES S. CO2 and H2O reduction by solar thermochemical looping using SnO2/SnO redox reactions: Thermogravimetric analysis[J]. International Journal of Hydrogen Energy, 2012, 37(10):8223-8231.
doi: 10.1016/j.ijhydene.2012.02.158 |
[27] |
GALVEZ M E, LOUTZENHISER P G, HISCHIER I, et al. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: Thermodynamic analysis[J]. Energy Fuels, 2008, 22(5):3544-3550.
doi: 10.1021/ef800230b |
[28] |
ABANADES S, FLAMANT G. Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides[J]. Solar Energy, 2006, 80(12):1611-1623.
doi: 10.1016/j.solener.2005.12.005 |
[29] |
CHUEH W C, FALTER C, ABBOTT M, et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science, 2010, 330(6012):1797-1801.
doi: 10.1126/science.1197834 |
[30] | MARXER D, FURLER P, TAKACS M, et al. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency[J]. Energy & Environmental Science, 2017, 10(5):1142-1149. |
[31] |
MA T, WANG L, CHANG C, et al. A comparative thermodynamic analysis of isothermal and non-isothermal CeO2-based solar thermochemical cycle with methane-driven reduction[J]. Renewable Energy, 2019, 143:915-921.
doi: 10.1016/j.renene.2019.05.047 |
[32] |
JIANG Q Q, TONG J H, ZHOU G, et al. Thermochemical CO2 splitting reaction with supported LaxA1-xFeyB1-yO3 (A = Sr, Ce, B = Co, Mn; x ≥ 0, y ≤1) perovskite oxides[J]. Solar Energy, 2014, 103:425-437.
doi: 10.1016/j.solener.2014.02.033 |
[33] |
JIANG Q Q, ZHOU G, JIANG Z, et al. Thermochemical CO2 splitting reaction with CexM1-xO2-δ (M = Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and Sm3+) solid solutions[J]. Solar Energy, 2014, 99:55-66.
doi: 10.1016/j.solener.2013.10.021 |
[34] | JIANG Q Q, TONG J H, CHEN Z P, et al. Research progress on solar thermal H2O and CO2 splitting reactions[J]. Science China Chemistry, 2014, 44(12):1834-1848. |
[35] |
BHOSALE R R, TAKALKAR G, SUTAR P, et al. A decade of ceria based solar thermochemical H2O/CO2 splitting cycle[J]. International Journal of Hydrogen Energy, 2019, 44(1):34-60.
doi: 10.1016/j.ijhydene.2018.04.080 |
[36] |
SCHEFFE J R, WEIBEL D, STEINFED A. Lanthanum-strontium-manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2[J]. Energy Fuels, 2013, 27(8):4250-4257.
doi: 10.1021/ef301923h |
[37] |
DEMONT A, ABANADES S. Solar thermochemical conversion of CO2 into fuel via two-step redox cycling of non-stoichiometric Mn-containing perovskite oxides[J]. Journal of Materials Chemistry A, 2015, 3(7):3536-3546.
doi: 10.1039/C4TA06655C |
[38] |
DEMONT A, ABANADES S. High redox activity of Sr-substituted lanthanum manganite perovskites for two-step thermochemical dissociation of CO2[J]. RSC Advances, 2014, 4(97):54885-54891.
doi: 10.1039/C4RA10578H |
[39] |
DEY S, NAIDU B S, RAO C N R. Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1-xAxO3 (A = Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O[J]. Dalton Transactions, 2016, 45(6):2430-2435.
doi: 10.1039/C5DT04822B |
[40] |
DEY S, NAIDU B S, GOVINDARAJ A, et al. Noteworthy performance of La1-xCaxMnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2[J]. Physical Chemistry Chemical Physics, 2015, 17(1):122-125.
doi: 10.1039/C4CP04578E |
[41] |
DEY S, NAIDU B S, RAO C N R. Ln0.5A0.5MnO3 (Ln=Lanthanide, A=Ca, Sr) perovskites exhibiting remarkable performance in the thermochemical generation of CO and H2 from CO2 and H2O[J]. Chemistry-A European Journal, 2015, 21(19):7077-7081.
doi: 10.1002/chem.201500442 |
[42] |
YANG C K, YAMAZAKI Y, AYDIN A, et al. Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting[J]. Journal of Materials Chemistry A, 2014, 2(33):13612-13623.
doi: 10.1039/C4TA02694B |
[43] |
FU M K, MA H, LI X, et al. Mechanism and thermodynamic study of solar H2 production on LaFeO3 defected surface: Effect of H2O to H2 conversion ratio and kinetics on optimization of energy conversion efficiency[J]. Journal of Cleaner Production, 2020, 268:122293.
doi: 10.1016/j.jclepro.2020.122293 |
[44] | WANG K, YU Q B, QIN Q, et al. Thermodynamic modeling of the combined CLG-CLHG system for syngas and hydrogen generation[J]. Environmental Progress & Sustainable Energy, 2018, 37(3):1132-1139. |
[45] |
WANG L L, AL-MAMUN M, LIU P, et al. La1-xCaxMn1-yAlyO3 perovskites as efficient catalysts for two-step thermochemical water splitting in conjunction with exceptional hydrogen yields[J]. Chinese Journal of Catalysis, 2017, 38(6):1079-1086.
doi: 10.1016/S1872-2067(17)62820-1 |
[46] | WANG L L, AL-MAMUN M, ZHONG Y L, et al. Ca2+ and Ga3+ doped LaMnO3 perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting[J]. Sustainable Energy & Fuels, 2017, 1(5):1013-1017. |
[47] |
HAEUSSLER A, ABANADES S, JOUANNAUX J, et al. Non-stoichiometric redox active perovskite materials for solar thermochemical fuel production: A review[J]. Catalysts, 2018, 8(12):611.
doi: 10.3390/catal8120611 |
[48] |
ORFILA M, LINARES M, MOLINA R, et al. Perovskite materials for hydrogen production by thermochemical water splitting[J]. International Journal of Hydrogen Energy, 2016, 41(42):19329-19338.
doi: 10.1016/j.ijhydene.2016.07.041 |
[49] | NAIR M M, ABANADES S. Experimental screening of perovskite oxides as efficient redox materials for solar thermochemical CO2 conversion[J]. Sustainable Energy & Fuels, 2018, 2(4):843-854. |
[50] | BARCELLOS D R, SANDERS M D, TONG J, et al. BaCe0.25Mn0.75O3-δ:A promising perovskite-type oxide for solar thermochemical hydrogen production[J]. Energy & Environmental Science, 2018, 11(11):3256-3265. |
[51] |
BARCELLOS D R, COURY F G, EMERY A, et al. Phase identification of the layered perovskite CexSr2-xMnO4 and application for solar thermochemical water splitting[J]. Inorganic Chemistry, 2019, 58(12):7705-7714.
doi: 10.1021/acs.inorgchem.8b03487 |
[52] |
GOKON N, HARA K, SUGIYAMA Y, et al. Thermochemical two-step water splitting cycle using perovskite oxides based on LaSrMnO3 redox system for solar H2 production[J]. Thermochimica Acta, 2019, 680:178374.
doi: 10.1016/j.tca.2019.178374 |
[53] | CARRILLO A J, BORK A H, MOSER T, et al. Modifying La0.6Sr0.4MnO3 perovskites with Cr incorporation for fast isothermal CO2-splitting kinetics in solar-driven thermochemical cycles[J]. Advanced Energy Materials, 2019, 9(28):13. |
[54] |
CHEN Z, JIANG Q, CHENG F, et al. Sr- and Co-doped LaGaO3-δ with high O2 and H2 yields in solar thermochemical water splitting[J]. Journal of Materials Chemistry A, 2019, 7(11):6099-6112.
doi: 10.1039/C8TA11957K |
[55] | FU M K, WANG L, MA T Z, et al. Effectiveness of Zr and Hf incorporation into LaCoO3 towards fast and thermodynamically favorable solar thermochemical CO production studied with density functional theory[J]. Sustainable Energy & Fuels, 2020, 4(3):1515-1521. |
[56] |
WANG L, MA T Z, DAI S M, et al. Experimental study on the high performance of Zr doped LaCoO3 for solar thermochemical CO production[J]. Chemical Engineering Journal, 2020, 389:124426.
doi: 10.1016/j.cej.2020.124426 |
[57] |
QIAN X, HE J, MASTRONARDO E, et al. Outstanding properties and performance of CaTi0.5Mn0.5O3-δ for solar-driven thermochemical hydrogen production[J]. Matter, 2021, 4(2):688-708.
doi: 10.1016/j.matt.2020.11.016 |
[58] |
QIAN X, HE J, MASTRONARDO E, et al. Favorable redox thermodynamics of SrTi0.5Mn0.5O3-δ in solar thermochemical water splitting[J]. Chemistry of Materials, 2020, 32(21):9335-9346.
doi: 10.1021/acs.chemmater.0c03278 |
[59] |
NAIK J M, RITTER C, BULFIN B, et al. Reversible phase transformations in novel Ce-substituted perovskite oxide composites for solar thermochemical redox splitting of CO2[J]. Advanced Energy Materials, 2021, 11(16):2003532.
doi: 10.1002/aenm.v11.16 |
[60] |
EMERY A A, WOLVERTON C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites[J]. Scientific Data, 2017, 4:170153.
doi: 10.1038/sdata.2017.153 |
[61] |
FU M K, WANG L, MA T Z, et al. Chemical formula input relied intelligent identification of inorganic perovskite for solar thermochemical hydrogen production[J]. Inorganic Chemistry Frontiers, 2021, 8:2097-2102.
doi: 10.1039/D0QI01521K |
[62] |
KRISHNAN S, SHARMA V, SINGH P, et al. Dopants in lanthanum manganite: Insights from first-principles chemical space exploration[J]. Journal of Physical Chemistry C, 2016, 120(39):22126-22133.
doi: 10.1021/acs.jpcc.6b04524 |
[63] |
GAUTAM G S, STECHEL E B, CARTER E A. Exploring Ca-Ce-M-O (M=3D transition metal) oxide perovskites for solar thermochemical applications[J]. Chemistry of Materials, 2020, 32(23):9964-9982.
doi: 10.1021/acs.chemmater.0c02912 |
[64] | VIETEN J, BULFIN B, HUCK P, et al. Materials design of perovskite solid solutions for thermochemical applications[J]. Energy & Environmental Science, 2019, 12(4):1369-1384. |
[65] |
MICHALSKY R, STEINFELD A. Computational screening of perovskite redox materials for solar thermochemical ammonia synjournal from N2 and H2O[J]. Catalysis Today, 2017, 286:124-130.
doi: 10.1016/j.cattod.2016.09.023 |
[66] | BARTEL C J, RUMPTZ J R, WEIMER A W, et al. High-throughput equilibrium analysis of active materials for solar thermochemical ammonia synjournal[J]. ACS Applied Materials & Interfaces, 2019, 11(28):24850-24858. |
[67] |
AGRAFIOTIS C, ROEB M, KONSTANDOPOULOS A G, et al. Solar water splitting for hydrogen production with monolithic reactors[J]. Solar Energy, 2005, 79(4):409-421.
doi: 10.1016/j.solener.2005.02.026 |
[68] |
FURLER P, STEINFELD A. Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling[J]. Chemical Engineering Science, 2015, 137:373-383.
doi: 10.1016/j.ces.2015.05.056 |
[69] |
LAPP J, DAVIDSON J H, LIPIŃSKI W. Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery[J]. Energy, 2012, 37(1):591-600.
doi: 10.1016/j.energy.2011.10.045 |
[70] |
SCHEFFE J R, STEINFELD A. Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production[J]. Energy Fuels, 2012, 26(3):1928-1936.
doi: 10.1021/ef201875v |
[71] |
SACK J P, BREUER S, COTELLI P, et al. High temperature hydrogen production: Design of a 750 kW demonstration plant for a two step thermochemical cycle[J]. Solar Energy, 2016, 135:232-241.
doi: 10.1016/j.solener.2016.05.059 |
[72] | HAEUSSLER A, ABANADES S, JULBE A, et al. Two-step CO2 and H2O splitting using perovskite-coated ceria foam for enhanced green fuel production in a porous volumetric solar reactor[J]. Journal of CO2 Utilization, 2020, 41:9. |
[73] | MARTIN J, VITKO J. ASCUAS: A solar central receiver utilizing a solid thermal carrier[R]. New Mexico :Sandia National Laboratory, 1982:1-28. |
[74] | ALONSO E, ROMERO M. Review of experimental investigation on directly irradiated particles solar reactors[J]. Renewable & Sustainable Energy Reviews, 2015, 41:53-67. |
[75] |
STEINFELD A, BRACK M, MEIER A, et al. A solar chemical reactor for co-production of zinc and synjournal gas[J]. Energy, 1998, 23(10):803-814.
doi: 10.1016/S0360-5442(98)00026-7 |
[76] |
KOEPF E, ADVANI S G, STEINFELD A, et al. A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling, and experimentation[J]. International Journal of Hydrogen Energy, 2012, 37(22):16871-16887.
doi: 10.1016/j.ijhydene.2012.08.086 |
[77] |
SCHEFFE J R, WELTE M, STEINFELD A. Thermal reduction of ceria within an aerosol reactor for H2O and CO2 splitting[J]. Industrial and Engineering Chemistry Research, 2014, 53(6):2175-2182.
doi: 10.1021/ie402620k |
[78] |
WELTE M, BARHOUMI R, ZBINDEN A, et al. Experimental demonstration of the thermochemical reduction of ceria in a solar aerosol reactor[J]. Industrial and Engineering Chemistry Research, 2016, 55(40):10618-10625.
doi: 10.1021/acs.iecr.6b02853 |
[79] |
BRKIC M, KOEPF E, ALXNEIT I, et al. Vacuum powder feeding and dispersion analysis for a solar thermochemical drop-tube reactor[J]. Chemical Engineering Science, 2016, 152:280-292.
doi: 10.1016/j.ces.2016.06.024 |
[80] |
KOEPF E, VILLASMIL W, MEIER A. Pilot-scale solar reactor operation and characterization for fuel production via the Zn/ZnO thermochemical cycle[J]. Applied Energy, 2016, 165:1004-1023.
doi: 10.1016/j.apenergy.2015.12.106 |
[81] |
HOSKINS A L, MILLICAN S L, CZERNIK C E, et al. Continuous on-sun solar thermochemical hydrogen production via an isothermal redox cycle[J]. Applied Energy, 2019, 249:368-376.
doi: 10.1016/j.apenergy.2019.04.169 |
[82] | RICHTER S, BRENDELBERGER S, GERSDORF F, et al. Demonstration reactor system for the indirect solar-thermochemical reduction of redox particles:The particle mix reactor [C]// ASME 2019 13th International Conference on Energy Sustainability Collocated with the ASME 2019 Heat Transfer Summer Conference, 2019. |
[83] | TREGAMBI C, BEVILACQUA C, TROIANO M, et al. A novel autothermal fluidized bed reactor for concentrated solar thermal applications[J]. Chemical Engineering Journal, 2020, 398:12. |
[84] | WANG B, LI L F, SCHAFER F, et al. Thermal reduction of iron-manganese oxide particles in a high-temperature packed-bed solar thermochemical reactor[J]. Chemical Engineering Journal, 2021, 412:12. |
[85] |
FLETCHER E A, MOEN R L. Hydrogen and oxygen from water[J]. Science, 1977, 197(4308):1050-1056.
doi: 10.1126/science.197.4308.1050 |
[86] |
NORING J E, DIVER R B, FLETCHER E A. Hydrogen and oxygen from water Ⅴ:The ROC system[J]. Energy, 1981, 6(2):109-121.
doi: 10.1016/0360-5442(81)90131-6 |
[87] |
ZHU L, LU Y, SHEN S. Solar fuel production at high temperatures using ceria as a dense membrane[J]. Energy, 2016, 104:53-63.
doi: 10.1016/j.energy.2016.03.108 |
[88] |
MICHALSKY R, NEUHAUS D, STEINFELD A. Carbon dioxide reforming of methane using an isothermal redox membrane reactor[J]. Energy Technology, 2015, 3(7):784-789.
doi: 10.1002/ente.v3.7 |
[89] |
JIN W, ZHANG C, CHANG X, et al. Efficient catalytic decomposition of CO2 to CO and O2 over Pd/mixed-conducting oxide catalyst in an oxygen-permeable membrane reactor[J]. Environmental Science & Technology, 2008, 42(8):3064-3068.
doi: 10.1021/es702913f |
[90] |
KOGAN A, SPIEGLER E, WOLFSHTEIN M. Direct solar thermal splitting of water and on-site separation of the products. Ⅲ:Improvement of reactor efficiency by steam entrainment[J]. International Journal of Hydrogen Energy, 2000, 25(8):739-745.
doi: 10.1016/S0360-3199(99)00102-0 |
[91] |
GEFFROY P M, FOULETIER J, RICHET N, et al. Rational selection of MIEC materials in energy production processes[J]. Chemical Engineering Science, 2013, 87:408-433.
doi: 10.1016/j.ces.2012.10.027 |
[92] |
KHARTON V V, MARQUES F M B, ATKINSON A. Transport properties of solid oxide electrolyte ceramics: A brief review[J]. Solid State Ionics, 2004, 174(1-4):135-149.
doi: 10.1016/j.ssi.2004.06.015 |
[93] |
TOU M, MICHALSKY R, STEINFELD A. Solar-driven thermochemical splitting of CO2 and in situ separation of CO and O2 across a ceria redox membrane reactor[J]. Joule, 2017, 1(1):146-154.
doi: 10.1016/j.joule.2017.07.015 |
[94] | TOU M, JIN J, HAO Y, et al. Solar-driven co-thermolysis of CO2 and H2O and in-situ oxygen removal across a non-stoichiometric ceria membrane[J]. Reaction Chemistry & Engineering, 2019. |
[95] |
BULFIN B. Thermodynamic limits of countercurrent reactor systems, with examples in membrane reactors and the ceria redox cycle[J]. Physical Chemistry Chemical Physics, 2019, 21(4):2186-2195.
doi: 10.1039/C8CP07077F |
[96] | HAEUSSLER A, ABANADES S, JOUANNAUX J, et al. Demonstration of a ceria membrane solar reactor promoted by dual perovskite coatings for continuous and isothermal redox splitting of CO2 and H2O[J]. Journal of Membrane Science, 2021, 634:13. |
[97] |
MOHAMMADI K, KHANMOHAMMADI S, KHORASANIZADEH H, et al. A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective[J]. Applied Energy, 2020, 268:114940.
doi: 10.1016/j.apenergy.2020.114940 |
[98] |
ZHENG Z, LIU T, LIU Q, et al. A distributed energy system integrating SOFC-MGT with mid-and-low temperature solar thermochemical hydrogen fuel production[J]. International Journal of Hydrogen Energy, 2021, 46(38):19846-19860.
doi: 10.1016/j.ijhydene.2021.03.137 |
[99] |
FAN G, AHMADI A, EHYAEI M A, et al. Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and copper-chlorine thermochemical cycle to produce power, cooling, and hydrogen[J]. Energy, 2021, 222:120008.
doi: 10.1016/j.energy.2021.120008 |
[100] |
BAI Z, LIU Q, GONG L, et al. Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production[J]. Applied Energy, 2019, 253:113491.
doi: 10.1016/j.apenergy.2019.113491 |
[101] |
PFEIFER A, HERC L, BATAS BJELIĆ I, et al. Flexibility index and decreasing the costs in energy systems with high share of renewable energy[J]. Energy Conversion and Management, 2021, 240:114258.
doi: 10.1016/j.enconman.2021.114258 |
[102] | LI Z, ZHANG W, ZHANG R, et al. Development of renewable energy multi-energy complementary hydrogen energy system (A Case Study in China): A review[J]. Energy Exploration & Exploitation, 2020, 38(6):2099-2127. |
[103] |
CALISE F. Design of a hybrid polygeneration system with solar collectors and a solid oxide fuel cell: Dynamic simulation and economic assessment[J]. International Journal of Hydrogen Energy, 2011, 36(10):6128-6150.
doi: 10.1016/j.ijhydene.2011.02.057 |
[104] |
CALISE F, CAPPIELLO F L, VICIDOMINI M, et al. Water-energy nexus: A thermoeconomic analysis of polygeneration systems for small Mediterranean islands[J]. Energy Conversion and Management, 2020, 220:113043.
doi: 10.1016/j.enconman.2020.113043 |
[105] |
ALMAHDI M, DINCER I, ROSEN M A. A new solar based multigeneration system with hot and cold thermal storages and hydrogen production[J]. Renewable Energy, 2016, 91:302-314.
doi: 10.1016/j.renene.2016.01.069 |
[106] |
SUMAN S. Hybrid nuclear-renewable energy systems: A review[J]. Journal of Cleaner Production, 2018, 181:166-177.
doi: 10.1016/j.jclepro.2018.01.262 |
[107] |
ORHAN M F, DINCER I, ROSEN M A, et al. Integrated hydrogen production options based on renewable and nuclear energy sources[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8):6059-6082.
doi: 10.1016/j.rser.2012.06.008 |
[108] | 薛屹洵, 郭庆来, 孙宏斌, 等. 面向多能协同园区的能源综合利用率指标[J]. 电力自动化设备, 2017, 37(6):117-123. |
XUE Yixun, GUO Qinglai, SUN Hongbin, et al. Comprehensive energy utilization rate for park-level integrated energy system[J]. Electric Power Automation Equipment, 2017, 37(6) :117-123. | |
[109] |
SALAMEH T, SAYED E T, ABDELKAREEM M A, et al. Optimal selection and management of hybrid renewable energy system: Neom City as a case study[J]. Energy Conversion and Management, 2021, 244:114434.
doi: 10.1016/j.enconman.2021.114434 |
[110] |
REN T, LI X, CHANG C, et al. Multi-objective optimal analysis on the distributed energy system with solar driven metal oxide redox cycle based fuel production[J]. Journal of Cleaner Production, 2019, 233:765-781.
doi: 10.1016/j.jclepro.2019.06.028 |
[111] |
VERÁSTEGUI F, LORCA Á, OLIVARES D E, et al. An adaptive robust optimization model for power systems planning with operational uncertainty[J]. IEEE Transactions on Power Systems, 2019, 34(6):4606-4616.
doi: 10.1109/TPWRS.59 |
[112] |
KYRIAKARAKOS G, DOUNIS A I, ROZAKIS S, et al. Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel[J]. Applied Energy, 2011, 88(12):4517-4526.
doi: 10.1016/j.apenergy.2011.05.038 |
[113] | NGUYEN M Y, THUY P D. A new architecture of energy hubs for animal farms with distributed energy resources[J]. International Journal of Emerging Electric Power Systems, 2019, 20(6):61-73. |
[114] | MIN C G. Analyzing the impact of variability and uncertainty on power system flexibility[J]. Applied Sciences-Basel, 2019, 9(3):561. |
[115] |
MAVROMATIDIS G, OREHOUNIG K, BOLLINGER L A, et al. Ten questions concerning modeling of distributed multi-energy systems[J]. Building and Environment, 2019, 165:106372.
doi: 10.1016/j.buildenv.2019.106372 |
[116] |
TEMIZ M, DINCER I. Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems[J]. Energy, 2021, 219:119554.
doi: 10.1016/j.energy.2020.119554 |
[117] |
DANESHVAR M, MOHAMMADI-IVATLOO B, ZARE K, et al. Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment[J]. Energy, 2020, 193:116657.
doi: 10.1016/j.energy.2019.116657 |
[118] |
YANG X, CHEN Z, HUANG X, et al. Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort[J]. Energy, 2021, 221:119727.
doi: 10.1016/j.energy.2020.119727 |
[119] |
CHANG X, XU Y, SUN H, et al. A distributed robust optimization approach for the economic dispatch of flexible resources[J]. International Journal of Electrical Power & Energy Systems, 2021, 124:106360.
doi: 10.1016/j.ijepes.2020.106360 |
[120] |
REHFELDT D, HOBBIE H, SCHÖNHEIT D, et al. A massively parallel interior-point solver for LPs with generalized arrowhead structure, and applications to energy system models[J]. European Journal of Operational Research, 2021, 296(1):60-71.
doi: 10.1016/j.ejor.2021.06.063 |
[121] | 刘树林, 肖燕. 确定性动态规划求解发电优化的局限性分析[J]. 华电技术, 2013, 35(3):35-37. |
LIU Shulin, XIAO Yan. Analysis on limitation of deterministic dynamic programming method in solving problem of power generation optimization of cascade hydropower plants[J]. Huadian Technology, 2013, 35(3):35-37. | |
[122] |
LANGIU M, SHU D Y, BAADER F J, et al. COMANDO: A next-generation open-source framework for energy systems optimization[J]. Computers & Chemical Engineering, 2021, 152:107366.
doi: 10.1016/j.compchemeng.2021.107366 |
[123] | 胡雪, 杨俊红, 刘德朝, 等. 基于人工智能与热力系统融合的综合节能技术研究[J]. 华电技术, 2020, 42(11):21-33. |
HU Xue, YANG Junhong, LIU Dechao, et al. Research on comprehensive energy-saving technology based on integration of artificial intelligence into thermal systems[J]. Huadian Technology, 2020, 42(11):21-33. | |
[124] | 赵鑫, 郑文禹, 侯智华, 等. 基于粒子群优化算法的多能互补系统经济调度研究[J]. 华电技术, 2021, 43(4):14-20. |
ZHAO Xin, ZHENG Wenyu, HOU Zhihua, et al. Research on economic dispatch of multi-energy complementary system based on Particle Swarm Optimization[J]. Huadian Technology, 2021, 43(4):14-20. | |
[125] | 尹硕, 郭兴五, 燕景, 等, 考虑高渗透率和碳排放约束的园区综合能源系统优化运行研究[J]. 华电技术, 2021, 43(4):1-7. |
YIN Shuo, GUO Xingwu, YAN Jing, et al. Study on optimized operation on integrated energy system in parks with high permeability and carbon emission constraints[J]. Huadian Technology, 2021, 43(4):1-7. | |
[126] |
TANG G, WU Y, LI C, et al. A novel wind speed interval prediction based on error prediction method[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11):6806-6815.
doi: 10.1109/TII.9424 |
[127] |
HU W, ZHANG X, ZHU L, et al. Short-term photovoltaic power prediction based on similar days and improved SOA-DBN model[J]. IEEE Access, 2021, 9:1958-1971.
doi: 10.1109/Access.6287639 |
[128] |
LEE J, WANG W, HARROU F, et al. Wind power prediction using ensemble learning-based models[J]. IEEE Access, 2020, 8:61517-61527.
doi: 10.1109/Access.6287639 |
[129] |
FENG X, LING X, ZHENG H, et al. Adaptive multi-kernel svm with spatial-temporal correlation for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6):2001-2013.
doi: 10.1109/TITS.6979 |
[130] |
HAAG S, ANDERL R. Automated generation of as-manufactured geometric representations for digital twins using STEP[J]. Procedia CIRP, 2019, 84:1082-1087.
doi: 10.1016/j.procir.2019.04.305 |
[131] |
PANG T Y, PELAEZ RESTREPO J D, CHENG C T, et al. Developing a digital twin and digital thread framework for an 'Industry 4.0' shipyard[J]. Applied Sciences, 2021, 11(3):1097.
doi: 10.3390/app11031097 |
[132] |
PHANDEN R K, SHARMA P, DUBEY A. A review on simulation in digital twin for aerospace, manufacturing and robotics[J]. Materials Today: Proceedings, 2021, 38:174-178.
doi: 10.1016/j.matpr.2020.06.446 |
[133] |
XU B, WANG J, WANG X, et al. A case study of digital-twin-modelling analysis on power-plant-performance optimizations[J]. Clean Energy, 2019, 3:227-234.
doi: 10.1093/ce/zkz025 |
[134] |
TALKHESTANI B A, JUNG T, LINDEMANN B, et al. An architecture of an intelligent digital twin in a cyber-physical production system[J]. AT-Automatisierungstechnik, 2019, 67(9):762-782.
doi: 10.1515/auto-2019-0039 |
[135] |
RASSOLKIN A, OROSZ T, DEMIDOVA G L, et al. Implementation of digital twins for electrical energy conversion systems in selected case studies[J]. Proceedings of the Estonian Academy of Sciences, 2021, 70(1):19-39.
doi: 10.3176/proc.2021.1.03 |
[136] |
ROJEK I, MIKOŁAJEWSKI D, DOSTATNI E. Digital twins in product lifecycle for sustainability in manufacturing and maintenance[J]. Applied Sciences, 2021, 11(1):31.
doi: 10.3390/app11010031 |
[137] | 钟崴, 郑立军, 俞自涛, 等. 基于“数字孪生”的智慧供热技术路线[J]. 华电技术, 2020, 42(11):1-5. |
ZHONG Wei, ZHENG Lijun, YU Zitao, et al. Smart heat-supply roadmap based on digital twin[J]. Huadian Technology, 2020, 42(11):1-5. | |
[138] | 叶青, 孙海龙, 孔凡淇, 等. 工业园区蒸汽热网智慧调度技术研究及应用[J]. 华电技术, 2020, 42(11):6-13. |
YE Qing, SUN Hailong, KONG Fanqi, et al. Study and application of intelligent dispatch technology for steam heating networks in industrial parks[J]. Huadian Technology, 2020, 42(11):6-13. | |
[139] |
LIM K Y H, ZHENG P, CHEN C H, et al. A digital twin-enhanced system for engineering product family design and optimization[J]. Journal of Manufacturing Systems, 2020, 57:82-93.
doi: 10.1016/j.jmsy.2020.08.011 |
[140] | SCHUETZER K, BERTAZZI J D A, SALLATI C, et al. Contribution to the development of a digital twin based on product lifecycle to support the manufacturing process [C]// 29th Cirp Design Conference, 2019: 82-87. |
[141] | 金涛. 云计算在电力信息化中的应用与展望[J]. 华电技术, 2012, 34(S1):38-41. |
JIN Tao. Application of cloud computing in informatization of electric power industry and prospect[J]. Huadian Technology, 2012, 34(S1):38-41. | |
[142] | 鄢晶, 高天露, 张俊, 等. 边云链协同技术在能源互联网数据管理中的应用及展望[J]. 华电技术, 2020, 42(8):41-47. |
YAN Jing, GAO Tianlu, ZHANG Jun, et al. Application and prospect of edge-cloud-chain collaboration technologies for energy internet data management[J]. Huadian Technology, 2020, 42(8):41-47. |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[3] | 张立栋, 李佩, 姜铁骝, 李钦伟, 张磊, 徐峰, 孟欣. 槽式太阳能阵列挡风增速效果数值模拟[J]. 综合智慧能源, 2024, 46(6): 1-7. |
[4] | 钟永洁, 王紫东, 左建勋, 王常青, 李靖霞, 纪陵. 计及多时段尺度与地域分层的多能互补系统经济调度[J]. 综合智慧能源, 2024, 46(4): 52-59. |
[5] | 李成雲, 杨东升, 周博文, 杨波, 李广地. 基于数字孪生技术的新型电力系统数字化[J]. 综合智慧能源, 2024, 46(2): 1-11. |
[6] | 李春华, 朱飙. 西北四省太阳能资源分布与长期变化趋势分析[J]. 综合智慧能源, 2024, 46(2): 75-81. |
[7] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[8] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[9] | 刘天阳, 高亚静, 谢典, 赵良. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52. |
[10] | 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63. |
[11] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[12] | 王永真, 韩艺博, 韩恺, 韩俊涛, 宋阔, 张兰兰. 基于知识图谱的数据中心综合能源系统研究综述[J]. 综合智慧能源, 2023, 45(7): 1-10. |
[13] | 李宜哲, 王丹, 贾宏杰, 周天烁, 曹逸滔, 张帅, 刘佳委. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7): 22-29. |
[14] | 刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65. |
[15] | 赵国涛, 钱国明, 孙艳兵, 丁泉, 朱海东. 碳逸会计在综合能源系统低碳性评价中的应用[J]. 综合智慧能源, 2023, 45(6): 73-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||