综合智慧能源 ›› 2022, Vol. 44 ›› Issue (8): 1-24.doi: 10.3969/j.issn.2097-0706.2022.08.001
• 氧离子导体电池系统 • 下一篇
高圆1(), 李智1,2, 李甲鸿1, 高九涛1, 李成新1,*(
), 李长久1
收稿日期:
2022-06-28
修回日期:
2022-08-12
出版日期:
2022-08-25
通讯作者:
* 李成新(1974),男,教授,博士,从事固体氧化物燃料电池与电解池、功能涂层研究, licx@xjtu.edu.cn。作者简介:
高圆(1989),女,工程师,硕士,从事固体氧化物燃料电池研究, yuangao@xjtu.edu.cn。
基金资助:
GAO Yuan1(), LI Zhi1,2, LI Jiahong1, GAO Jiutao1, LI Chengxin1,*(
), LI Changjiu1
Received:
2022-06-28
Revised:
2022-08-12
Published:
2022-08-25
摘要:
可快速启动的金属支撑固体氧化物燃料电池(MS-SOFC)是助力实现“双碳”目标的变革性技术。MS-SOFC具有机械性能好、易于密封等优点,采用与陶瓷电解质热膨胀系数相近且成本低廉的铁素体不锈钢为电池提供结构支撑,有望大幅降低制造成本。金属连接体与金属支撑体是MS-SOFC的2个核心部件,常用的材料有铁素体不锈钢、Cr基合金以及Ni基合金。目前日本、德国、美国和我国均开发了面向SOFC应用的不锈钢体系,不锈钢涂层防护技术也取得了显著的进展,有效提高了材料的抗高温氧化与还原性质。为解决高温烧结制备MS-SOFC所产生的问题,主要采用热喷涂法与低温烧结法制备致密电解质。MS-SOFC使用金属支撑体与连接体,可以使用传统的焊接技术实现支撑体与连接体的有效连接,或通过粉末压制-烧结一体化多孔金属支撑体-连接体结构可以有效实现燃料侧燃料气体的密封。MS-SOFC长期运行性能衰减机理有金属材料的氧化、Cr挥发引起的阴极毒化、催化剂颗粒的粗化等。英国Ceres Power公司、美国通用电气公司(GE)、德国宇航中心(DLR)、德国于利希(FZJ)研究中心、奥地利Plansee公司等均取得了一定的成就,MS-SOFC已初步实现了商业化应用。
中图分类号:
高圆, 李智, 李甲鸿, 高九涛, 李成新, 李长久. 金属支撑固体氧化物燃料电池技术进展[J]. 综合智慧能源, 2022, 44(8): 1-24.
GAO Yuan, LI Zhi, LI Jiahong, GAO Jiutao, LI Chengxin, LI Changjiu. Progress in technologies of metal-supported solid oxide fuel cells[J]. Integrated Intelligent Energy, 2022, 44(8): 1-24.
表1
MS-SOFC与AS-SOFC参数对比
项目 | Ceres Power | Elcogen | SOLID Power | CCTC |
---|---|---|---|---|
国家 | 英国 | 芬兰 | 意大利 | 中国 |
电堆结构 | 金属支撑平板式 | 阳极支撑平板式 | 阳极支撑平板式 | 阳极支撑平板式 |
电堆图片 | ![]() | ![]() | ![]() | ![]() |
典型应用 | SteelGen | Convion C50 | BuleGen BG15 | BlueGen |
制造厂家 | Ceres Power | Convion | SOLID Power SpA | CFCL |
产品照片 | ![]() | ![]() | ![]() | ![]() |
产品功率(电功率/热功率)/kW | 0.70/— | 58.00/32.00 | 1.50/0.81 | 1.50/0.61 |
发电效率/% | 47 | 55 | 57 | 60 |
整体效率/% | 87 | 85 | 88 | 85 |
启动时间 | 15 | | 约24 h | 约25 h |
表3
SOFC不锈钢体系成分
公司及牌号 | w(Fe)/% | w(Cr)/% | w(C)/% | w(Nb)/% | w(Ti)/% | w(Mn)/% | w(Si)/% | w(Cu)/% | w(Al)/% | w(W)/% | w(RE)/% | α |
---|---|---|---|---|---|---|---|---|---|---|---|---|
VDM Metals Crofer22 APU | Bal. | 20.0 | <0.03 | 0.03 | 0.3 | <0.5 | 0 | 0 | — | La:0.04 | 11.9 | |
VDM Metals Crofer22 H | Bal. | 20.0 | <0.03 | 0.5 | 0.02 | <0.8 | 0.1 | <0.5 | <0.1 | 1.0 | La:0.04 | 11.8 |
Hitachi Metals ZGM232L | Bal. | 22.0 | 0.02 | — | — | 0.5 | 0.1 | — | 0.1 | — | La:0.07; Zr:0.25 | |
Hitachi Metals ZGM232G10 | Bal. | 24.0 | 0.02 | — | — | 0.3 | 0.1 | 1.0 | 0.1 | 2.0 | La:0.07; Zr:0.25 | 12.4 |
西安交通大学 NYBR25 | Bal. | 24.0 | <0.02 | 0.5 | 0.14 | 0.5 | <0.2 | 0.3 | — | 0.3 | Re:0.50 |
表4
800 ℃下不同尖晶石CTE和电导率[64]
元素 | 尖晶石 | 电导率/(S·cm-1) | α(×10-6)/K-1 | |
---|---|---|---|---|
Mg | Al | MgAl2O4 | 1.00×10-5 | 9.0 |
Cr | MgCr2O4 | 0.02 | 7.2 | |
Mn | MgMn2O4 | 0.97 | 8.7 | |
Fe | MgFe2O4 | 0.08 | 12.3 | |
Mn | Al | MnAl2O4 | 0.01 | 7.9 |
Cr | Mn1.2Cr1.8O4 | 0.02 | 6.8 | |
Mn | Mn3O4 | 0.10 | 8.8 | |
Fe | MnFe2O4 | 8.00 | 12.5 | |
Co | MgCo2O4 | 60.00 | 9.7 | |
Co | Al | CoAl2O4 | 1.00×10-4 | 8.7 |
Cr | CoCr2O4 | 7.40 | 7.5 | |
Mn | CoMn2O4 | 6.40 | 7.0 | |
Fe | CoFe2O4 | 0.93 | 12.1 | |
Co | Co2O4 | 6.70 | 9.3 | |
Ni | Al | NiAl2O4 | 1.00×10-3 | 8.1 |
Cr | NiCr2O4 | 0.73 | 7.3 | |
Mn | NiMn2O4 | 1.40 | 8.5 | |
Fe | NiFe2O4 | 0.26 | 10.8 | |
Cu | Al | CuAl2O4 | 0.05 | — |
Cr | CuCr2O4 | 0.40 | — | |
Mn | Cu1.3Mn1.7O4 | 225.00(750 ℃) | 12.2 | |
Fe | CuFe2O4 | 9.10 | 11.2 | |
Zn | Al | ZnAl2O4 | 1.00×10-5 | 8.7 |
Cr | ZnCr2O4 | 0.01 | 7.1 | |
Mn | ZnMn2O4 | — | — | |
Fe | ZnFe2O4 | 0.07 | 7.0 |
[1] | 苗安康, 袁越, 吴涵, 等. “双碳”目标下绿色氢能技术发展现状与趋势研究[J]. 分布式能源, 2021, 6(4):15-24. |
MIAO Ankang, YUAN Yue, WU Han, et al. Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality[J]. Distributed Energy, 2021, 6(4):15-24. | |
[2] | 中国氢能源及燃料电池产业创新战略联盟. 中国氢能源及燃料电池产业发展报告[M]. 北京: 人民日报出版社, 2020. |
[3] | 国际能源署. 中国能源体系碳中和路线图[R]. 巴黎: 国际能源署, 2021. |
[4] |
BALLARD T D A, REES L, NOBBS C, et al. Development of the 5 kWe SteelCell® technology platform for stationary power and transport applications[J]. ECS Transactions, 2019, 91(1): 117-122.
doi: 10.1149/09101.0117ecst |
[5] |
LEAH R T, BONE P A, SELCUK A, et al. Latest results and commercialization of the Ceres Power SteelCell® technology platform[J]. ECS Transactions, 2019, 91(1): 51-61.
doi: 10.1149/09101.0051ecst |
[6] | O'HAYRE R, CHA S W, COLELLA W G, et al. Fuel cell fundamentals[M]. Hoboken: John Wiley & Sons, Incorporated, 2016. |
[7] | Institute of Combustion Technology. Hybrid power plant[EB/OL].[2022-06-10]. https://www.dlr.de/vt/en/desktopdefault.aspx/tabid-9006/18909_read-15119/. |
[8] | ADJIMAN C, ATKINSON A, AZAD A, et al. A review of progress in the UK supergen fuel cell programme[J]. Solid Oxide Fuel Cells 11 (SOFC-XI), 2009, 25(2): 35-42. |
[9] | POWER C. Phil Caldwell and his executive team host a tour of Ceres' new manufacturing facility in Redhill[R]. Redhill: Gatton Park Business Centre Wells Place, 2019. |
[10] | WORKSHOP A E. GE fuel cells overview[R]. 2017. |
[11] |
BRANDON N P, BLAKE A, CORCORAN D, et al. Development of metal supported solid oxide fuel cells for operation at 500 —600 ℃[J]. Journal of Fuel Cell Science and Technology, 2004, 1(1): 61-65.
doi: 10.1115/1.1794709 |
[12] | DOGDIBEGOVIC E, FUKUYAMA Y, TUCKER M C. Ethanol internal reforming in solid oxide fuel cells: A path toward high performance metal-supported cells for vehicular applications[J]. Journal of Power Sources, 2021, 492:227598. |
[13] | BAE J, BAEK S W, JEONG J, et al. Metal-supported solid oxide fuel cell with diesel reformer[J]. Solid Oxide Fuel Cells 11 (SOFC-XI), 2009, 25(2): 711-718. |
[14] | JEONG J, BAEK S W, BAE J. Hydrocarbon fueled operation of metal-supported solid oxide fuel cell[C]// Proceedings of the Asme 8th International Conference on Fuel Cell Science, Engineering, and Technology. 2010: 705-709. |
[15] |
BANCE P, BRANDON N P, GIRVAN B, et al. Spinning-out a fuel cell company from a UK University—2 years of progress at Ceres Power[J]. Journal of Power Sources, 2004, 131(1-2): 86-90.
doi: 10.1016/j.jpowsour.2003.11.077 |
[16] |
NIELSEN J, PERSSON A H, MUHL T T, et al. Towards high power density metal supported solid oxide fuel cell for mobile applications[J]. Journal of the Electrochemical Society, 2018, 165(2): F90-F96.
doi: 10.1149/2.0741802jes |
[17] |
ROEHRENS D, PACKBIER U, FANG Q P, et al. Operation of thin-film electrolyte metal-supported solid oxide fuel cells in lightweight and stationary stacks: Material and microstructural aspects[J]. Materials, 2016, 9(9):762.
doi: 10.3390/ma9090762 |
[18] |
KONG Y H, HUA B, PU J A, et al. A cost-effective process for fabrication of metal-supported solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4592-4596.
doi: 10.1016/j.ijhydene.2010.02.106 |
[19] |
BAE J. A novel metal supported SOFC fabrication method developed in KAIST: A sinter-joining method[J]. Journal of the Korean Ceramic Society, 2016, 53: 478-482.
doi: 10.4191/kcers.2016.53.5.478 |
[20] | ATKINSON A, BARON S, BRANDON N P, et al. Metal-supported solid oxide fuel cells for operation at temperatures of 500 —650 ℃[J]. Fuel Cell Science, Engineering and Technology, 2003: 499-506. |
[21] |
LEAH R, BONE A, HAMMER E, et al. Development Progress on the ceres power steel cell technology platform: Further progress towards commercialization[J]. ECS Transactions, 2017, 78(1): 87-95.
doi: 10.1149/07801.0087ecst |
[22] | LEAH R, LANKIN M, PIERCE R, et al. Process for forming a metal supported solid oxide fuel cell: U.S. Patent 10,003,080[P]. 2018-06-19. |
[23] | LEAH R, BONE A, SELCUK A, et al. Development of highly robust, volume-manufacturable metal-supported SOFCs for operation below 600 ℃[J]. ECS Transactions, 2011, 35(1): 351-367. |
[24] |
FRANCO T, HAYDN M, WEBER A, et al. The status of metal-supported SOFC development and industrialization at plansee[J]. ECS Transactions, 2013, 57: 471-480.
doi: 10.1149/05701.0471ecst |
[25] | HAYDN M, ORTNER K, FRANCO T, et al. Development of metal supported solid oxide fuel cells based on powder metallurgical manufacturing route[J]. Energy Materials, 2013, 8(4):382-387. |
[26] |
UDOMSILP D, RECHBERGER J, NEUBAUER R, et al. Metal-supported solid oxide fuel cells with exceptionally high power density for range extender systems[J]. Cell Reports Physical Science, 2020, 1(6):100072.
doi: 10.1016/j.xcrp.2020.100072 |
[27] |
TUCKER M C. Progress in metal-supported solid oxide fuel cells: A review[J]. Journal of Power Sources, 2010, 195(15): 4570-4582.
doi: 10.1016/j.jpowsour.2010.02.035 |
[28] | SOYSAL D, ANSAR A, ILHAN Z, et al. Nanostructured composite cathodes by suspension plasma spraying for SOFC applications[J]. Solid Oxide Fuel Cells 12 (SOFC XII), 2011, 35(1): 2233-2241. |
[29] | ANSAR A, SZABO P, ARNOLD J, et al. Metal supported solid oxide fuel cells and stacks for auxiliary power units:Progress, challenges and lessons learned[J]. Solid Oxide Fuel Cells 12 (SOFC XII), 2011, 35(1): 147-155. |
[30] | CHRISTIANSEN N, PRIMDAHL S, WANDEL M, et al. Status of the solid oxide fuel cell development at topsoe fuel cell A/S and DTU energy conversion[J]. Solid Oxide Fuel Cells 13 (SOFC-XIII), 2013, 57(1): 43-52. |
[31] |
HICKEY D, ALINGER M, SHAPIRO A, et al. Stack development at GE-fuel cells[J]. ECS Transactions, 2017, 78(1): 107-116.
doi: 10.1149/07801.0107ecst |
[32] |
GAO J T, LI J H, WANG Y P, et al. Performance and stability of plasma-sprayed 10×10 cm2 self-sealing metal-supported solid oxide fuel cells[J]. Journal of Thermal Spray Technology, 2021, 30(4): 1059-1068.
doi: 10.1007/s11666-021-01171-5 |
[33] | GAO J T, LI C X, WANG Y P, et al. Study on the fabrication and performance of very low pressure plasma sprayed large-area porous metal supported solid oxide fuel cell[J]. International Thermal Spray Conference and Exposition, 2018: 665-669. |
[34] |
GAO J T, WANG Y P, LI C X, et al. Study on the fabrication and performance of very low pressure plasma sprayed porous metal supported solid oxide fuel cell[J]. ECS Transactions, 2017, 78(1): 2059-2067.
doi: 10.1149/07801.2059ecst |
[35] |
DOGDIBEGOVIC E, CHENG Y, SHEN F Y, et al. Scaleup and manufacturability of symmetric-structured metal-supported solid oxide fuel cells[J]. Journal of Power Sources, 2021, 489:229439.
doi: 10.1016/j.jpowsour.2020.229439 |
[36] |
TUCKER M C. Metal-supported solid oxide fuel cell with high power density[J]. ECS Transactions, 2017, 78(1): 2015-2020.
doi: 10.1149/07801.2015ecst |
[37] |
TUCKER M C. Development of high power density metal-supported solid oxide fuel cells[J]. Energy Technology, 2017, 5(12): 2175-2181.
doi: 10.1002/ente.201700242 |
[38] |
GHIARA G, PICCARDO P, BONGIORNO V, et al. Characterization of metallic interconnects extracted from solid oxide fuel cell stacks operated up to 20 000 h in real life conditions:The air side[J]. Energies, 2020, 13(24):6487.
doi: 10.3390/en13246487 |
[39] | WU J W, LIU X B. Recent Development of SOFC metallic interconnect[J]. Journal of Materials Science & Technology, 2010, 26(4): 293-305. |
[40] |
BIANCO M, OUWELTJES J P, VAN HERL J. Degradation analysis of commercial interconnect materials for solid oxide fuel cells in stacks operated up to 18 000 hours[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31406-31422.
doi: 10.1016/j.ijhydene.2019.09.218 |
[41] |
CHO H J, KIM K J, PARK Y M, et al. Flexible solid oxide fuel cells supported on thin and porous metal[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9577-9584.
doi: 10.1016/j.ijhydene.2016.04.040 |
[42] |
CHO H J, PARK Y M, CHOI G M. Enhanced power density of metal-supported solid oxide fuel cell with a two-step firing process[J]. Solid State Ionics, 2011, 192(1): 519-522.
doi: 10.1016/j.ssi.2010.03.023 |
[43] |
CHOI H J, KIM T W, NA Y H, et al. Enhanced electrochemical performance of metal-supported solid oxide fuel cells via an inner coating of Gd0.1Ce0.9O2-δ nanosol in the porous NiFe-metal support[J]. Journal of Power Sources, 2018, 406: 81-87.
doi: 10.1016/j.jpowsour.2018.10.044 |
[44] |
CHO H J, CHOI G M. Fabrication and characterization of Ni-supported solid oxide fuel cell[J]. Solid State Ionics, 2009, 180(11-13): 792-795.
doi: 10.1016/j.ssi.2008.12.041 |
[45] |
HWANG C S, TSAI C H, LO C H, et al. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode[J]. Journal of Power Sources, 2008, 180(1): 132-142.
doi: 10.1016/j.jpowsour.2008.01.075 |
[46] |
KANG B S, MATSUDA J, JU Y W, et al. Nano strain induced double columnar oxide as highly active oxygen-dissociation electrode for Ni-Fe metal supported solid oxide fuel cells[J]. Nano Energy, 2019, 56: 382-390.
doi: 10.1016/j.nanoen.2018.11.074 |
[47] | KIRDYASHKIN A I, KITLER V D, MAZNOY A S, et al. Development of new Ni-Al porous alloys for metal-supported solid oxide fuel cells[J]. High Technology: Research and Applications, 2014, 1040: 19-23. |
[48] |
MAZNOY A, KIRDYASHKIN A, KITLER V, et al. Combustion synthesis and characterization of porous Ni-Al materials for metal-supported solid oxide fuel cells application[J]. Journal of Alloys and Compounds, 2017, 697: 114-123.
doi: 10.1016/j.jallcom.2016.11.350 |
[49] | MAZNOY A S, KIRDYASHKIN A I, KITLER V D, et al. Synthesis of porous NiAl-Ni3Al alloys for metal supports of solid oxide fuel cells[J]. Materials Letters, 2015, 5(4): 491-496. |
[50] |
SOLOUYEV A A, RABOTKIN S V, SHIPILOVA A V, et al. Solid oxide fuel cell with Ni-Al support[J]. International Journal of Hydrogen Energy, 2015, 40(40): 14077-14084.
doi: 10.1016/j.ijhydene.2015.07.151 |
[51] |
XU N, CHEN M, HAN M F. Oxidation behavior of a Ni-Fe support in SOFC anode atmosphere[J]. Journal of Alloys and Compounds, 2018, 765: 757-763.
doi: 10.1016/j.jallcom.2018.04.326 |
[52] |
WANG X, LI K, JIA L C, et al. Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors[J]. Journal of Power Sources, 2015, 277: 474-479.
doi: 10.1016/j.jpowsour.2014.10.165 |
[53] | 辛凤兰. 高质量激光打孔技术的研究[D]. 北京: 北京工业大学, 2006. |
[54] | AHMET S. Metal substrate for fuel cells[Z]. 2009. |
[55] |
ZHU J H, CHESSON D A, YU Y T. Review—(Mn,Co)3O4-based spinels for SOFC interconnect coating application[J]. Journal of the Electrochemical Society, 2021, 168(11):114519.
doi: 10.1149/1945-7111/ac3a29 |
[56] |
AJITDOSS L C, SMEACETTO F, BINDI M, et al. Mn1.5Co1.5O4 protective coating on Crofer22 APU produced by thermal co-evaporation for SOFCs[J]. Materials Letters, 2013, 95: 82-85.
doi: 10.1016/j.matlet.2012.12.079 |
[57] | UEHARA T, YASUDA N, TANAKA S, et al. Oxidation resistance and mechanical properties of ZMG232L and improved Fe-Cr ferritic alloys for SOFC interconnects[J]. Solid Oxide Fuel Cells 12 (SOFC XII), 2011, 35(1): 2591-2599. |
[58] | 江舟, 文魁, 刘太楷, 等. 固体氧化物燃料电池金属连接体防护涂层研究进展[J]. 表面技术, 2022, 51(4): 1-13. |
JIANG Zhou, WEN Kui, LIU Taikai, et al. Research progress of protective coating for metal interconnect of solid oxide fuel cell[J]. Surface Technology, 2022, 51(4):1-13. | |
[59] |
SAEIDPOUR F, ZANDRAHIMI M, EBRAHIMIFAR H. Evaluation of pulse electroplated cobalt/yttrium oxide composite coating on the Crofer22 APU stainless steel interconnect[J]. International Journal of Hydrogen Energy, 2019, 44(5):3157-3169.
doi: 10.1016/j.ijhydene.2018.12.062 |
[60] |
JUN J, KIM D, JUN J. Effects of REM coatings on electrical conductivity of ferritic stainless steels for SOFC interconnect applications[J]. ECS Transactions, 2007, 7(1):2385-2390.
doi: 10.1149/1.2729360 |
[61] |
QU W, JIAN L, IVEY D G, et al. Yttrium,cobalt and yttrium/cobalt oxide coatings on ferritic stainless steels for SOFC interconnects[J]. Journal of Power Sources, 2006, 157(1):335-350.
doi: 10.1016/j.jpowsour.2005.07.052 |
[62] |
LENKA R K, PATRO P K, SHARMA J, et al. Evaluation of La0.75Sr0.25Cr0.5Mn0.5O3 protective coating on ferritic stainless steel interconnect for SOFC application[J]. International Journal of Hydrogen Energy, 2016, 41(44): 20365-20372.
doi: 10.1016/j.ijhydene.2016.08.143 |
[63] |
PRZYBYLSKI K, BRYLEWSKI T, DURDA E, et al. Oxidation properties of the Crofer22 APU steel coated with La0.6Sr0.4Co0.2Fe0.8O3 for IT-SOFC interconnect applications[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2):825-834.
doi: 10.1007/s10973-013-3594-1 |
[64] |
PETRIC A, LING H. Electrical conductivity and thermal expansion of spinels at elevated temperatures[J]. Journal of the American Ceramic Society, 2007, 90(5):1515-1520.
doi: 10.1111/j.1551-2916.2007.01522.x |
[65] |
BABA Y, KAMEDA H, MATSUZAKI Y, et al. Manganese-cobalt spinel coating on alloy interconnects for SOFCs[J]. Materials Science Forum, 2010,2011, 696:406-411.
doi: 10.4028/www.scientific.net/MSF.696.406 |
[66] |
HOSSEINI S N, KARIMZADEH F, ENAYATI M H, et al. Oxidation and electrical behavior of CuFe2O4 spinel coated Crofer22 APU stainless steel for SOFC interconnect application[J]. Solid State Ionics, 2016, 289: 95-105.
doi: 10.1016/j.ssi.2016.02.015 |
[67] |
HU Y Z, YUN L L, WEI T, et al. Aerosol sprayed Mn1.5Co1.5O4 protective coatings for metallic interconnect of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(44): 20305-20313.
doi: 10.1016/j.ijhydene.2016.09.096 |
[68] |
HU Y Z, LI C X, ZHANG S L, et al. The microstructure stability of atmospheric plasma-sprayed MnCo2O4 coating under dual-atmosphere (H2/Air) exposure[J]. Journal of Thermal Spray Technology, 2016, 25(1-2): 301-310.
doi: 10.1007/s11666-015-0346-8 |
[69] |
HU Y Z, YAO S W, LI C X, et al. Influence of pre-reduction on microstructure homogeneity and electrical properties of APS Mn1.5Co1.5O4 coatings for SOFC interconnects[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27241-27253.
doi: 10.1016/j.ijhydene.2017.09.073 |
[70] | 李成新, 王岳鹏, 张山林, 等. 先进陶瓷涂层结构调控及其在固体氧化物燃料电池中的应用[J]. 中国表面工程, 2017, 30(2):1-19. |
LI Chengxin, WANG Yuepeng, ZHANG Shanlin, et al. Microstructure development for application of thermal sprayed ceramic coatings to manufacturing of solid oxide fuel cells[J]. China Surface Engineering, 2017, 30(2): 1-19. | |
[71] |
GAO J T, LI J H, FENG Q Y, et al. High performance of ceramic current collector fabricated at 550 ℃ through in-situ joining of reduced Mn1.5Co1.5O4 for metal-supported solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(53):29123-29130.
doi: 10.1016/j.ijhydene.2020.06.237 |
[72] | BESSETTE N F, GEORGE R A. Performance and reliability of Westinghouse's air electrode supported solid oxide fuel cell at atmospheric and elevated pressures[J]. Denki Kagaku, 1996, 64(6): 602-608. |
[73] |
SZYMCZEWSKA D, KARCZEWSKI J, CHRZAN A, et al. CGO as a barrier layer between LSCF electrodes and YSZ electrolyte fabricated by spray pyrolysis for solid oxide fuel cells[J]. Solid State Ionics, 2017, 302: 113-117.
doi: 10.1016/j.ssi.2016.11.008 |
[74] |
TSAI T, BARNETT S A. Effect of LSM-YSZ cathode on thin-electrolyte cell performance[J]. Solid State Ionics, 1996, 93:207-217.
doi: 10.1016/S0167-2738(96)00524-3 |
[75] |
HWANG C, TSAI C H, LO C H, et al. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode[J]. Journal of Power Sources, 2008, 180(1): 132-142.
doi: 10.1016/j.jpowsour.2008.01.075 |
[76] |
BRANDNER M, BRAM M, FROITZHEIM J, et al. Electrically conductive diffusion barrier layers for metal-supported SOFC[J]. Solid State Ionics, 2008, 179(27-32):1501-1504.
doi: 10.1016/j.ssi.2008.03.002 |
[77] |
KIM K J, CHOI G M. Phase stability and oxygen non-stoichiometry of Gd-doped ceria during sintering in reducing atmosphere[J]. Journal of Electroceramics, 2015, 35(1-4): 68-74.
doi: 10.1007/s10832-015-9993-x |
[78] |
YI J Y, CHOI G M. The effect of reduction atmosphere on the LaGaO3-based solid oxide fuel cell[J]. Journal of the European Ceramic Society, 2005, 25(12): 2655-2659.
doi: 10.1016/j.jeurceramsoc.2005.03.118 |
[79] |
BU J, JöNSSON P G, ZHAO Z. The effect of NiO on the conductivity of BaZr0.5Ce0.3Y0.2O3-δ based electrolytes[J]. RSC Advances, 2016, 6(67): 62368-62377.
doi: 10.1039/C6RA09936J |
[80] |
TANASINI P, CANNAROZZO M, COSTAMAGNA P, et al. Experimental and theoretical investigation of degradation mechanisms by particle coarsening in SOFC electrodes[J]. Fuel Cells, 2009, 9(5):740-752.
doi: 10.1002/fuce.200800192 |
[81] |
ZHANG S L, LIU T, LI C J, et al. Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(14): 7535-7553.
doi: 10.1039/C5TA01203A |
[82] |
ZHANG S L, YU H X, LI C X, et al. Thermally sprayed high-performance porous metal-supported solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes[J]. Journal of Materials Chemistry A, 2016, 4(19): 7461-7468.
doi: 10.1039/C6TA02065H |
[83] |
FAUCHAIS P, FUKUMOTO M, VARDELLE A, et al. Knowledge concerning splat formation: An invited review[J]. Journal of Thermal Spray Technology, 2004, 13(3): 337-360.
doi: 10.1361/10599630419670 |
[84] |
OHMORI A, LI C J. Quantitative characterization of the structure of plasma-sprayed Al2O3 coating by using copper electroplating[J]. Thin Solid Films, 1991, 201(2):241-252.
doi: 10.1016/0040-6090(91)90114-D |
[85] |
GORAL M, KOTOWSKI S, NOWOTNIK A, et al. PS-PVD deposition of thermal barrier coatings[J]. Surface and Coatings Technology, 2013, 237:51-55.
doi: 10.1016/j.surfcoat.2013.09.028 |
[86] |
LANG M, HENNE R, SCHAPER S, et al. Development and characterization of vacuum plasma sprayed thin film solid oxide fuel cells[J]. Journal of Thermal Spray Technology, 2001, 10(4): 618-625.
doi: 10.1361/105996301770349141 |
[87] |
LANG M, SZABO P, ILHAN Z, et al. Development of solid oxide fuel cells and short stacks for mobile application[J]. Journal of Fuel Cell Science and Technology, 2007, 4(4): 384-391.
doi: 10.1115/1.2756569 |
[88] | SZABO P, ARNOLD J, FRANCO T, et al. Progress in the metal supported solid oxide fuel cells and stacks for APU[J]. ECS Transactions, 2009, 25(2): 175-185. |
[89] |
HICKEY D, ALINGER M, SHAPIRO A, et al. Stack development at GE-fuel cells[J]. ECS Transactions, 2017, 78(1):107-116.
doi: 10.1149/07801.0107ecst |
[90] |
GUPTA M, WEBER A, MARKOCSAN N, et al. Electrochemical performance of plasma sprayed metal supported planar solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2016, 163(9):F1059-F1065.
doi: 10.1149/2.0791609jes |
[91] |
GUPTA M, WEBER A, MARKOCSAN N, et al. Development of plasma sprayed Ni/YSZ anodes for metal supported solid oxide fuel cells[J]. Surface and Coatings Technology, 2017, 318: 178-189.
doi: 10.1016/j.surfcoat.2016.09.014 |
[92] |
HARRIS J, KUHN J, KESLER O. Atmospheric plasma-sprayed metal-supported solid oxide fuel cells with varying cathode microstructures[J]. Journal of the Electrochemical Society, 2017, 164(4): F441-F447.
doi: 10.1149/2.1591704jes |
[93] |
HWANG C S, HWANG T J, TSAI C H, et al. Effect of plasma spraying power on LSGM electrolyte of metal-supported solid oxide fuel cells[J]. Ceramics International, 2017, 43:S591-S597.
doi: 10.1016/j.ceramint.2017.05.192 |
[94] |
HWANG C S, TSAI C H, CHANG C L, et al. Plasma sprayed metal-supported solid oxide fuel cell and stack with nanostructured anodes and diffusion barrier layer[J]. Thin Solid Films, 2014, 570:183-188.
doi: 10.1016/j.tsf.2014.02.034 |
[95] | HWANG C S, TSAI C H, CHANG C L, et al. Recoverable performance of plasma-sprayed metal-supported solid oxide fuel cell[J]. Advances in Solid Oxide Fuel Cells X, 2015: 23-31. |
[96] |
HWANG C S, TSAI C H, HWANG T J, et al. Novel metal substrates for high power metal-supported solid oxide fuel cells[J]. Fuel Cells, 2016, 16(2): 244-251.
doi: 10.1002/fuce.201500216 |
[97] |
HWANG C S, TSAI C H, YU J F, et al. High performance metal-supported intermediate temperature solid oxide fuel cells fabricated by atmospheric plasma spraying[J]. Journal of Power Sources, 2011, 196(4):1932-1939.
doi: 10.1016/j.jpowsour.2010.10.029 |
[98] |
HWANG I, JEONG J, LIM K, et al. Microstructural characterization of spray-dried NiO-8YSZ particles as plasma sprayable anode materials for metal-supported solid oxide fuel cell[J]. Ceramics International, 2017, 43(10): 7728-7735.
doi: 10.1016/j.ceramint.2017.03.077 |
[99] |
TSAI C H, HWANG C S, CHANG C L, et al. Performances of plasma sprayed metal-supported solid oxide fuel cell and stack[J]. Fuel Cells, 2018, 18(6): 800-808.
doi: 10.1002/fuce.201800080 |
[100] |
YANG S F, HWANG C S, TSAI C H, et al. Production of metal-supported solid oxide fuel cell using thermal plasma spraying technique[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 318-322.
doi: 10.1109/TPS.2016.2633568 |
[101] |
YANG S F, HWANG C S, TSAI C H, et al. Fabrication of 100 centimeter square metal-supported solid oxide fuel cell using thermal plasma technique[J]. ECS Transactions, 2017, 78(1): 2021-2028.
doi: 10.1149/07801.2021ecst |
[102] |
WANG Y P, GAO J T, LI J H, et al. Preparation of bulk-like La0.8Sr0.2Ga0.8Mg0.2O3-δ coatings for porous metal-supported solid oxide fuel cells via plasma spraying at increased particle temperatures[J]. International Journal of Hydrogen Energy, 2021, 46(64): 32655-32664.
doi: 10.1016/j.ijhydene.2021.07.121 |
[103] |
HAN J, ZHANG J, LI F, et al. Low-temperature sintering and microstructure evolution of Bi2O3-doped YSZ[J]. Ceramics International, 2018, 44(1):1026-1033.
doi: 10.1016/j.ceramint.2017.10.039 |
[104] |
KLEINLOGEL C, GAUCKLER L J. Sintering and properties of nanosized ceria solid solutions[J]. Solid State Ionics, 2000, 135(1-4): 567-573.
doi: 10.1016/S0167-2738(00)00437-9 |
[105] |
LEAH R, BONE A, LANKIN M, et al. Low-cost, redox-stable, low-temperature SOFC developed by ceres power for multiple applications: Latest development update[J]. ECS Transactions, 2013, 57(1): 461-470.
doi: 10.1149/05701.0461ecst |
[106] |
HAYDN M, ORTNER K, FRANCO T, et al. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells[J]. Journal of Power Sources, 2014, 256: 52-60.
doi: 10.1016/j.jpowsour.2014.01.043 |
[107] | FRANCO T, BRANDNER M, RUTTINGER M, et al. Recent development aspects of metal supported thin-film SOFC[J]. Solid Oxide Fuel Cells 11(SOFC-XI), 2009, 25(2): 681-688. |
[108] | BLENNOW P, HJELM J, KLEMENSO T, et al. Development of planar metal supported SOFC with novel cermet anode[J]. Solid Oxide Fuel Cells 11 (SOFC-XI), 2009, 25(2): 701-710. |
[109] |
BLENNOW P, HJELM J, KLEMENSø T, et al. Manufacturing and characterization of metal-supported solid oxide fuel cells[J]. Journal of Power Sources, 2011, 196(17): 7117-7125.
doi: 10.1016/j.jpowsour.2010.08.088 |
[110] |
NIELSEN J, PERSSON A H, SUDIREDDY B R, et al. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes metal supported solid oxide fuel cells for all ceramic and metal supported solid oxide fuel cells[J]. Journal of Power Sources, 2017, 372: 99-106.
doi: 10.1016/j.jpowsour.2017.10.066 |
[111] |
TUCKER M C, LAU G Y, JACOBSON C P, et al. Performance of metal-supported SOFCs with infiltrated electrodes[J]. Journal of Power Sources, 2007, 171(2): 477-482.
doi: 10.1016/j.jpowsour.2007.06.076 |
[112] |
TUCKER M C, LAU G Y, JACOBSON C P, et al. Stability and robustness of metal-supported SOFCs[J]. Journal of Power Sources, 2008, 175(1): 447-451.
doi: 10.1016/j.jpowsour.2007.09.032 |
[113] |
DOGDIBEGOVIC E, WANG R F, LAU G Y, et al. Progress in durability of metal-supported solid oxide fuel cells with infiltrated electrodes[J]. Journal of Power Sources, 2021, 437: 226935.
doi: 10.1016/j.jpowsour.2019.226935 |
[114] | DOGDIBEGOVIC E, WANG R F, LAU G Y, et al. High performance metal-supported solid oxide fuel cells with infiltrated electrodes[J]. Journal of Power Sources, 2021, 410: 91-98. |
[115] |
BISCHOF C, NENNING A, MALLEIER A, et al. Microstructure optimization of nickel/gadolinium-doped ceria anodes as key to significantly increasing power density of metal-supported solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31475-31487.
doi: 10.1016/j.ijhydene.2019.10.010 |
[116] |
THALER F, UDOMSILP D, SCHAFBAUER W, et al. Redox stability of metal-supported fuel cells with nickel/gadolinium-doped ceria anode[J]. Journal of Power Sources, 2019, 434: 226751.
doi: 10.1016/j.jpowsour.2019.226751 |
[117] |
ZHOU Y C, CHEN T, LI J L, et al. Long-term stability of metal-supported solid oxide fuel cells employing infiltrated electrodes[J]. Journal of Power Sources, 2015, 295: 67-73.
doi: 10.1016/j.jpowsour.2015.06.114 |
[118] |
BAEK S W, JEONG J, KIM Y M, et al. Metal-supported solid oxide fuel cells with barium-containing in-situ cathodes[J]. Solid State Ionics, 2011, 192(1):387-393.
doi: 10.1016/j.ssi.2010.09.047 |
[119] | BAEK S W, JEONG J, LEE S, et al. Electrochemical property of Cr-containing cathode materials for metal-supported solid oxide fuel cell[J]. Solid Oxide Fuel Cells 11 (SOFC-XI), 2009, 25(2): 2909-2914. |
[120] |
UDOMSILP D, ROEHRENS D, MENZLER N H, et al. High-performance metal-supported solid oxide fuel cells by advanced cathode processing[J]. Journal of the Electrochemical Society, 2017, 164(13):F1375-F1384.
doi: 10.1149/2.0571713jes |
[121] | UDOMSILP D, THALER F, MENZLER N H, et al. Dual-phase cathodes for metal-supported solid oxide fuel cells: Processing, performance, durability[J]. Journal of the Electrochemical Society, 2019, 166(8): 506-510. |
[122] |
LEE C, BAE J, KIM J H, et al. La0.8Sr0.2Co1-xMnxO3 cathode and its application to metal-supported solid oxide fuel cells[J]. Journal of Fuel Cell Science and Technology, 2010, 7(2): 021022.
doi: 10.1115/1.3182738 |
[123] |
LEE C B, BAE J M. Fabrication and characterization of metal-supported solid oxide fuel cells[J]. Journal of Power Sources, 2008, 176(1): 62-69.
doi: 10.1016/j.jpowsour.2007.10.067 |
[124] |
NI W J, ZHU T L, CHEN X Y, et al. Coupling decreased polarization resistance Sr0.95Ti0.3Fe0.6Ni0.1O3-δ cathode with efficient metal supported solid oxide fuel cell[J]. Journal of Power Sources, 2021, 489:229490.
doi: 10.1016/j.jpowsour.2021.229490 |
[125] |
LEE S, JANG Y H, SHIN H Y, et al. Reliable sealing design of metal-based solid oxide fuel cell stacks for transportation applications[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30280-30292.
doi: 10.1016/j.ijhydene.2019.09.087 |
[126] | 李成新, 李甲鸿, 康思远, 等. 一体化结构、电池/电解池及电池堆的制备方法: CN111403768B[P]. 2021-05-18. |
[127] | SCHILLER G. Progress in metal-supported solid oxide fuel cells[R]. Cologne: German Aerospace Center, 2011. |
[128] |
JANG Y H, LEE S, SHIN H, et al. Development and evaluation of 3-layer metal supported solid oxide fuel cell short stack[J]. ECS Transactions, 2017, 78(1):2045-2050.
doi: 10.1149/07801.2045ecst |
[129] |
JANG Y H, LEE S, SHIN H Y, et al. Development and evaluation of a 3-cell stack of metal-based solid oxide fuel cells fabricated via a sinter-joining method for auxiliary power unit applications[J]. International Journal of Hydrogen Energy, 2018, 43(33):16215-16229.
doi: 10.1016/j.ijhydene.2018.06.141 |
[130] | CHRISTIANSEN N, HANSEN J B, HOLM-LARSEN H, et al. Status of development and manufacture of solid oxide fuel cells at topsoe fuel cell A/S and Risϕ DTU[J]. Solid Oxide Fuel Cells 11 (SOFC-XI), 2009, 25(2): 133-142. |
[131] |
ZHOU L, MASON J H, LI W, et al. Comprehensive review of chromium deposition and poisoning of solid oxide fuel cells (SOFCs) cathode materials[J]. Renewable and Sustainable Energy Reviews, 2020, 134:110320.
doi: 10.1016/j.rser.2020.110320 |
[132] |
JIA C, WANG Y H, MOLIN S, et al. High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air[J]. Journal of Alloys and Compounds, 2019, 787: 1327-1335.
doi: 10.1016/j.jallcom.2019.01.015 |
[133] |
REISERT M, BEROVA V, APHALE A, et al. Oxidation of porous stainless steel supports for metal-supported solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30882-30897.
doi: 10.1016/j.ijhydene.2020.08.015 |
[134] |
SACHITANAND R, SATTARI M, SVENSSON J E, et al. Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects[J]. International Journal of Hydrogen Energy, 2013, 38(35): 15328-15334.
doi: 10.1016/j.ijhydene.2013.09.044 |
[135] |
WANG C C, GHOLIZADEH M, HOU B X, et al. Integrated Cr and S poisoning of a La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode for solid oxide fuel cells[J]. RSC Advances, 2021, 11(1): 7-14.
doi: 10.1039/D0RA09239H |
[136] |
HONG J S, HEO S J, SINGH P. Combined Cr and S poisoning behaviors of La1-xSrxMnO3±δ and La1-xSrxCo1-yFeyO3-δ cathodes in solid oxide fuel cells[J]. Applied Surface Science, 2020, 530:147253.
doi: 10.1016/j.apsusc.2020.147253 |
[137] |
WANG C C, DARVISH S, CHEN K F, et al. Combined Cr and S poisoning of La0.8Sr0.2MnO3-δ (LSM) cathode of solid oxide fuel cells[J]. Electrochim Acta, 2019, 312: 202-212.
doi: 10.1016/j.electacta.2019.04.116 |
[138] | HATHIRAMANI D, VASSEN R, MERTENS J, et al. Degradation mechanism of metal supported atmospheric plasma sprayed solid oxide fuel cells[J]. Ceramic Engineering and Science Proceedings, 2006, 27: 55-65. |
[139] |
TSAI C H, HWANG C S, CHANG C L, et al. Performance and long term durability of metal-supported solid oxide fuel cells[J]. Journal of the Ceramic Society of Japan, 2015, 123(1436): 205-212.
doi: 10.2109/jcersj2.123.205 |
[140] |
BOCCACCINI D N, FRANDSEN H L, SUDIREDDY B R, et al. Creep behaviour of porous metal supports for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21569-21580.
doi: 10.1016/j.ijhydene.2014.07.138 |
[141] |
ESPOSITO L, BOCCACCINI D N, PUCILLO G P, et al. Secondary creep creep of porous metal supports for solid oxide fuel cells by a CDM approach[J]. Materials Science and Engineering A—Structural Materials:Properties Microstructure and Processing, 2017, 691: 155-161.
doi: 10.1016/j.msea.2017.03.050 |
[142] |
REOLON R P, SANNA S, XU Y, et al. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(17): 7887-7896.
doi: 10.1039/C7TA11091J |
[143] |
TUCKER M C. Durability of symmetric-structured metal-supported solid oxide fuel cells[J]. Journal of Power Sources, 2017, 369: 6-12.
doi: 10.1016/j.jpowsour.2017.09.075 |
[144] |
TUCKER M C. Dynamic-temperature operation of metal-supported solid oxide fuel cells[J]. Journal of Power Sources, 2018, 395: 314-317.
doi: 10.1016/j.jpowsour.2018.05.094 |
[1] | 杨磊, 王睿, 马丽丽, 孙宁, 李雪莲, 陈婷, 王绍荣, 史彩霞. 钙和铁共掺杂PrBaCo2O5+δ作为固体氧化物燃料电池阴极的研究[J]. 综合智慧能源, 2024, 46(7): 47-52. |
[2] | 李彬, 胡纯瑾, 王婧. 基于EEMD-BiLSTM的可调节负荷预测方法[J]. 综合智慧能源, 2022, 44(9): 33-39. |
[3] | 许阳森, 张磊, 毕磊. 中温质子导体固体氧化物燃料电池的发展与挑战[J]. 综合智慧能源, 2022, 44(8): 68-74. |
[4] | 曹加锋, 李欣然, 邵善德, 冀月霞, 邵宗平. 质子陶瓷燃料电池稳定性研究综述[J]. 综合智慧能源, 2022, 44(8): 58-67. |
[5] | 杨莹, 张雁祥, 闫牧夫. 中低温固体氧化物燃料电池电解质制备方法研究进展[J]. 综合智慧能源, 2022, 44(8): 50-57. |
[6] | 韩倩雯, 张琨, 陈晓阳, 朱腾龙. La/Ni共掺杂SrTi0.35Fe0.65O3-δ对称电极用于SOEC共电解H2O/CO2研究[J]. 综合智慧能源, 2022, 44(8): 43-49. |
[7] | 朱沙沙, 李宗宝, 邓雅恬, 王欣, 贾礼超. 合金纳米颗粒在碳氢燃料SOFC阳极中的应用[J]. 综合智慧能源, 2022, 44(8): 33-42. |
[8] | 陈晗钰, 周晓亮, 刘立敏, 钱欣源, 王宙, 何非凡, 绳阳. 质子导体固体电解池电解水制氢研究进展[J]. 综合智慧能源, 2022, 44(8): 75-85. |
[9] | 喻小宝, 章天浩, 邓思维. 数字化背景下电力数据要素定价机制优化研究[J]. 综合智慧能源, 2022, 44(7): 81-89. |
[10] | 张一民, 康建立, 赵乃勤. 过渡金属基电解水催化剂的发展现状及展望[J]. 综合智慧能源, 2022, 44(5): 15-29. |
[11] | 王一铮, 胡嘉骅, 唐琦雯, 赵一琰, 沈琪. 电力现货市场背景下的水电出力优化与光伏发电消纳[J]. 综合智慧能源, 2022, 44(2): 73-79. |
[12] | 魏书洲, 李兵发, 孙晨阳, 周兴, 王亚龙, 邹一帆, 邓靖敏, 王金星. 压缩空气储能技术及其耦合发电机组研究进展[J]. 华电技术, 2021, 43(7): 9-16. |
[13] | 胡晓兰, 宋伟, 彭传圣, 李博, 蒋礼宏, 肖朝晖, 洪克岩. “双碳”目标下煤矿瓦斯治理与利用[J]. 华电技术, 2021, 43(12): 52-59. |
[14] | 张金平, 周强, 王定美, 李津, 刘丽娟, 张彦琪, 王晟. “双碳”目标下新型电力系统发展路径研究[J]. 华电技术, 2021, 43(12): 46-51. |
[15] | 马双忱, 杨鹏威, 王放放, 樊帅军, 赵光金, 李琦, 袁文玺, 卢锐, 邱明杰. “双碳”目标下传统火电面临的挑战与对策[J]. 综合智慧能源, 2021, 43(12): 36-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||