综合智慧能源 ›› 2024, Vol. 46 ›› Issue (1): 38-48.doi: 10.3969/j.issn.2097-0706.2024.01.005
谭九鼎1(), 李帅兵1,*(
), 李明澈1, 马喜平2, 康永强1, 董海鹰1
收稿日期:
2023-06-29
修回日期:
2023-08-01
出版日期:
2024-01-25
通讯作者:
*李帅兵(1989),男,副教授,博士,从事高压电气设备状态评估与无损检测、新能源电力系统状态检测与诊断等方面的研究,shuaibingli@mail.lzjtu.cn。作者简介:
谭九鼎(2000),男,硕士生,从事分布式微电网集群调度研究,tanjiuding66@163.com。
基金资助:
TAN Jiuding1(), LI Shuaibing1,*(
), LI Mingche1, MA Xiping2, KANG Yongqiang1, DONG Haiying1
Received:
2023-06-29
Revised:
2023-08-01
Published:
2024-01-25
Supported by:
摘要:
以高比例可再生电源为主的微网接入电力系统,在有效降低系统碳排放水平的同时,给系统带来大量不确定性因素。建立典型的“风-光-柴-储”微网结构,以经济最优、电能质量最优、碳排放最少、用户满意度最优为目标,总结了当前风、光等分布式微网电源对接入电网的主要影响。在此基础上,分别从确定模型、隶属度模型、区间数据模型3个方面总结了不确定参数建模方法,归纳了目前对含风、光不确定性电源微网优化调度的求解方法及各种方法的优缺点。最后,展望了含风、光不确定性电源微网优化调度的发展方向,旨在为微网不确定性优化调度研究提供参考。
中图分类号:
谭九鼎, 李帅兵, 李明澈, 马喜平, 康永强, 董海鹰. 计及不确定性的分布式微网参与电网优化调度方法综述[J]. 综合智慧能源, 2024, 46(1): 38-48.
TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties[J]. Integrated Intelligent Energy, 2024, 46(1): 38-48.
表1
微网不确定优化调度研究目标、内容及特点
优化目标 | 研究内容 | 研究特点 |
---|---|---|
经济最优 | 经济性最优调度[ | 改进粒子群算法求解 |
经济优化子问题与经济优化主问题多重优化[ | 不确定场景集概率模型、粒子群算法求解 | |
考虑高比例绿电并网的系统鲁棒性提升消纳率[ | 对偶分解为多子系统,利用本地搜寻求解 | |
结合碳减排目标结合多目标调度[ | 同时考虑电源侧与负荷侧两端数据变化开展多能互补 | |
电能质量最优 | 综合经济性规划兼顾电网安全性优化[ | 多种群遗传算法求解 |
碳排放最优 | 阶梯碳交易机制、分时电价结合优化微电网成本与系统碳排放[ | 粒子群算法求解 |
添加碳捕集设备并联合调度实现成本、碳排放最优化[ | 随机规划模型、多目标求解 | |
用户满意度最优 | 考虑用户功率需求不确定性开展调度[ | 区间线性规划 |
多目标协同优化 | 潮流计算、多目标嵌套、储能灵活优化[ | 不确定场景集合、鲁棒优化、复合差分进化算法求解 |
能量损耗最小、最优经济性、调峰调度[ | 双层优化调度、线性规划求解 | |
最小化节点电压降、最小化碳排放、最小化网损[ | 二代非支配排序遗传算法(NSGA-II)求解 |
表5
优化调度算法对比[41]
算法 | 初值选取 | 计算速度 | 结果 |
---|---|---|---|
常规 算法 | 除非线性算法外其他算法均严格要求参数保持线性 | 线性规划算法速度较快,非线性规划、混合整数规划法速度较慢,动态规划计算速度慢 | 动态规划通过分段求解可得到全局最优解,其他算法均不同程度陷入次优解 |
启发式算法 | 除遗传算法、禁忌算法外其他算法对参数有不同程度的线性要求 | 禁忌搜索算法、粒子群优化算法减速度快;退火算法、遗传算法求解速度较慢且计算过程随机化程度高,难以控制 | 退火算法、粒子群算法逼近全局最优解能力较好;禁忌算法、遗传算法结果优劣取决于预先设置的参数,否则易陷入次优解 |
组合式算法 | 需要根据算法选取数据 | 计算精度、计算速度均具优势 | 均能得到全局最优解,其中改进粒子群算法全局性最优 |
[1] | 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8):189-207. |
ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46(8):189-207. | |
[2] |
ØSTERGAARD P A, DUIC N, NOOROLLAHI Y, et al. Sustainable development using renewable energy technology[J]. Renewable Energy, 2020, 146: 2430-2437.
doi: 10.1016/j.renene.2019.08.094 |
[3] | 周任军, 闵雄帮, 童小娇, 等. 电力环保经济调度矩不确定分布鲁棒优化方法[J]. 中国电机工程学报, 2015, 35(13):3248-3256. |
ZHOU Renjun, MIN Xiongbang, TONG Xiaojiao, et al. Distributional robust optimization under moment uncertainty of environmental and economic dispatch for power system[J]. Proceedings of the CSEE, 2015, 35(13):3248-3256. | |
[4] | 张晓辉, 闫柯柯, 卢志刚, 等. 基于场景概率的含风电系统多目标低碳经济调度[J]. 电网技术, 2014, 38(7):1835-1841. |
ZHANG Xiaohui, YAN Keke, LU Zhigang, et al. Scenario probability based multi-objective low-carbon economic dispatch for wind-containing power systems[J]. Power System Technology, 2014, 38(7):1835-1841. | |
[5] |
ZHANG Y, GATSIS N, GIANNAKIS G B. Robust energy management for microgrids with high-penetration renewables[J]. IEEE Transactions on Sustainable Energy, 2013, 4(4): 944-953.
doi: 10.1109/TSTE.2013.2255135 |
[6] | 崔杨, 邓贵波, 赵钰婷, 等. 考虑源荷低碳特性互补的含风电电力系统经济调度[J]. 中国电机工程学报, 2021, 41(14):4799-4815. |
CUI Yang, DENG Guibo, ZHAO Yuting, et al. Economic dispatch of power system with wind power considering the complementarity of low-carbon characteristics of source side and load side[J]. Proceedings of the CSEE, 2021, 41(14):4799-4815. | |
[7] | 刘科研, 盛万兴, 马晓晨, 等. 基于多种群遗传算法的分布式光伏接入配电网规划研究[J]. 太阳能学报, 2021, 42(6):146-155. |
LIU Keyan, SHENG Wanxing, MA Xiaochen, et al. Planning research of distributed photovoltaic source access distribution network based on multi-population genetic algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42(6):146-155. | |
[8] | 韩莹, 于三川, 李荦一, 等. 计及阶梯式碳交易的风光氢储微电网低碳经济配置方法[J]. 高电压技术, 2022, 48(7):2523-2533. |
HAN Ying, YU Sanchuan, LI Luoyi, et al. Low-carbon and economic configuration method for solar hydrogen storage microgrid including stepped carbon trading[J]. High Voltage Engineering, 2022, 48(7):2523-2533. | |
[9] | 田明, 张海峰, 刘坤. 计及电转气和碳捕集的数据中心微电网“源-荷”低碳优化调度方法[J]. 电气工程学报, 2022, 17(3):85-94. |
TIAN Ming, ZHANG Haifeng, LIU Kun. "Source-load" low-carbon optimal scheduling method for data center microgrids considering power to gas and carbon capture[J]. Journal of Electrical Engineering, 2022, 17(3):85-94. | |
[10] | 闫梦阳, 李华强, 王俊翔, 等. 计及综合需求响应不确定性的园区综合能源系统优化运行模型[J]. 电力系统保护与控制, 2022, 50(2):163-175. |
YAN Mengyang, LI Huaqiang, WANG Junxiang, et al. Optimal operation model of a park integrated energy system considering uncertainty of integrated demand response[J]. Power System Protection and Control, 2022, 50(2):163-175. | |
[11] | 朱晓荣, 鹿国微, 谢婉莹. 考虑源网荷灵活性资源的配电网储能鲁棒规划[J]. 电力自动化设备, 2021, 41(8):8-16,40. |
ZHU Xiaorong, LU Guowei, XIE Wanying. Robust planning of energy storage in distribution networks considering source-network-load flexibility resources[J]. Electric Power Automation Equipment, 2021, 41(8):8-16,40. | |
[12] | 叶泽, 李湘旗, 姜飞, 等. 考虑最优弃能率的风光火储联合系统分层优化经济调度[J]. 电网技术, 2021, 45(6):2270-2280. |
YE Ze, LI Xiangqi, JIANG Fei, et al. Hierarchical optimization economic dispatching of combined wind-PV-thermal-energy storage system considering the optimal energy abandonment rate[J]. Power System Technology, 2021, 45(6):2270-2280. | |
[13] |
LI S, GONG W, WANG L, et al. Multi-objective optimal power flow with stochastic wind and solar power[J]. Applied Soft Computing, 2022, 114: 108045.
doi: 10.1016/j.asoc.2021.108045 |
[14] | 党媛. 大规模风电并网对电力系统电压稳定性影响的研究[D]. 兰州: 兰州理工大学, 2020. |
DANG Yuan. Research on the impact of large scale wind power grid connection on the voltage stability of power systems[D]. Lanzhou: Lanzhou University of Technology, 2020. | |
[15] |
JITHENDRANATH J, DAS D, GUERRERO J M. Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation[J]. Energy, 2021, 222: 119847.
doi: 10.1016/j.energy.2021.119847 |
[16] |
RAKIPOUR D, BARATI H. Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response[J]. Energy, 2019, 173: 384-399.
doi: 10.1016/j.energy.2019.02.021 |
[17] |
XIE Z Q, JI T Y, LI M S, et al. Quasi-Monte Carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function[J]. IEEE Transactions on Power Systems, 2017, 33(2): 2239-2247.
doi: 10.1109/TPWRS.2017.2737580 |
[18] |
刘吉臻, 王海东, 李明扬. 含风电的电力系统机组组合问题研究综述[J]. 电力建设, 2014, 35(12):38-45.
doi: 10.3969/j.issn.1000-7229.2014.12.007 |
LIU Jizhen, WANG Haidong, LI Mingyang. Review on unit commitment of power systems with wind power integration[J]. Electric Power Construction, 2014, 35(12):38-45.
doi: 10.3969/j.issn.1000-7229.2014.12.007 |
|
[19] |
MALEKI A, KHAJEH M G, AMERI M. Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty[J]. International Journal of Electrical Power & Energy Systems, 2016, 83: 514-524.
doi: 10.1016/j.ijepes.2016.04.008 |
[20] | 蒋程, 王硕, 王宝庆, 等. 基于拉丁超立方采样的含风电电力系统的概率可靠性评估[J]. 电工技术学报, 2016, 31(10):193-206. |
JIANG Cheng, WANG Shuo, WANG Baoqing, et al. Probabilistic reliability assessment of power system containing wind power based on Latin hypercube sampling[J]. Transactions of China Electrotechnical Society, 2016, 31(10):193-206. | |
[21] | 罗钢, 石东源, 陈金富, 等. 风光发电功率时间序列模拟的MCMC方法[J]. 电网技术, 2014, 38(2):321-327. |
LUO Gang, SHI Dongyuan, CHEN Jinfu, et al. A Markov Chain Monte Carlo method for simulation of wind and solar power time series[J]. Power System Technology, 2014, 38(2):321-327. | |
[22] |
WANG Y, HU Q, LI L, et al. Approaches to wind power curve modeling: A review and discussion[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109422.
doi: 10.1016/j.rser.2019.109422 |
[23] |
SUGANTHI L, INIYAN S, SAMUEL A A. Applications of fuzzy logic in renewable energy systems—A review[J]. Renewable and sustainable energy reviews, 2015, 48: 585-607.
doi: 10.1016/j.rser.2015.04.037 |
[24] | 向月, 刘俊勇, 魏震波, 等. 考虑可再生能源出力不确定性的微电网能量优化鲁棒模型[J]. 中国电机工程学报, 2014, 34(19):3063-3072. |
XIANG Yue, LIU Junyong, WEI Zhenbo, et al. Robust model of microgrid energy optimization with uncertain renewable energy sources[J]. Proceedings of the CSEE, 2014, 34(19):3063-3072. | |
[25] |
YIN L F, GAO Q, ZHAO L L, et al. A review of machine learning for new generation smart dispatch in power systems[J]. Engineering Applications of Artificial Intelligence, 2020, 88: 103372.
doi: 10.1016/j.engappai.2019.103372 |
[26] |
BISWAS P P, SUGANTHAN P N, AMARATUNGA G A J. Optimal power flow solutions incorporating stochastic wind and solar power[J]. Energy Conversion and Management, 2017, 148: 1194-1207.
doi: 10.1016/j.enconman.2017.06.071 |
[27] |
WU H, SHAHIDEHPOUR M, LI Z, et al. Chance-constrained day-ahead scheduling in stochastic power system operation[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1583-1591.
doi: 10.1109/TPWRS.2013.2296438 |
[28] |
DING T, LIU S Y, YUAN W, et al. A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks[J]. IEEE Transactions on Sustainable Energy, 2015, 7(1):301-311.
doi: 10.1109/TSTE.2015.2494587 |
[29] |
ZHANG H F, YUE D, XIE X P. Robust optimization for dynamic economic dispatch under wind power uncertainty with different levels of uncertainty budget[J]. IEEE Access, 2016, 4:7633-7644.
doi: 10.1109/ACCESS.2016.2621338 |
[30] |
LORCA A, SUN X A. Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind[J]. IEEE Transactions on Power Systems, 2014, 30(4): 1702-1713.
doi: 10.1109/TPWRS.2014.2357714 |
[31] | 徐秋实, 邓长虹, 赵维兴, 等. 含风电电力系统的多场景鲁棒调度方法[J]. 电网技术, 2014, 38(3):653-661. |
XU Qiushi, DENG Changhong, ZHAO Weixing, et al. A multi-scenario robust dispatch method for power grid integrated with wind farms[J]. Power System Technology, 2014, 38(3):653-661. | |
[32] | 杨策, 孙伟卿, 韩冬, 等. 考虑风电出力不确定的分布鲁棒经济调度[J]. 电网技术, 2020, 44(10):3649-3655. |
YANG Ce, SUN Weiqin, HAN Dong, et al. Distributionally-robust economic dispatch considering uncertain wind power output[J]. Power System Technology, 2020, 44(10):3649-3655. | |
[33] |
ALISMAIL F, XIONG P, SINGH C. Optimal wind farm allocation in multi-area power systems using distributionally robust optimization approach[J]. IEEE Transactions on Power Systems, 2017, 33(1): 536-544.
doi: 10.1109/TPWRS.2017.2695002 |
[34] | 税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型[J]. 中国电机工程学报, 2018, 38(24):7235-7247,7450. |
SHUI Yue, LIU Junyong, GAO Hongjun, et al. A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J]. Proceedings of the CSEE, 2018, 38(24):7235-7247,7450. | |
[35] |
张宏, 陈钊, 黄蓉, 丁坤, 等. 风电-光伏-光热联合发电系统的模糊多目标优化模型[J]. 电源学报, 2021, 19(2):112-120.
doi: 10.13234/j.issn.2095-2805.2021.2.112 |
ZHANG Hong, CHEN Zhao, HUANG Rong, DING Kun, et al. Fuzzy multi-objective optimization model of wind-PV-CSP hybrid power generation system[J]. Journal of Power Supply, 2021, 19(2):112-120.
doi: 10.13234/j.issn.2095-2805.2021.2.112 |
|
[36] | 刘文颖, 文晶, 谢昶, 等. 基于源荷互动的含风电场电力系统多目标模糊优化调度方法[J]. 电力自动化设备, 2014, 34(10):56-63,68. |
LIU Wenyin, WEN Jing, XIE Chang, et al. Multi-objective fuzzy optimal dispatch based on source-load interaction for power system with wind farm[J]. Electric Power Automation Equipment, 2014, 34(10):56-63,68. | |
[37] | 季峰, 蔡兴国, 岳彩国. 含风电场电力系统的模糊鲁棒优化调度[J]. 中国电机工程学报, 2014, 34(28):4791-4798. |
JI Feng, CAI Xingguo, YUE Caiguo. Fuzzy robust dispatch for power systems with wind farms[J]. Proceedings of the CSEE, 2014, 34(28):4791-4798. | |
[38] |
LOPEZ-GARZA E, DOMINGUEZ-CRUZ R F, MARTELL-CHAVEZ F, et al. Fuzzy logic and linear programming-based power grid-enhanced economical dispatch for sustainable and stable grid operation in Eastern Mexico[J]. Energies, 2022, 15(11): 4069.
doi: 10.3390/en15114069 |
[39] |
DONG W, YANG Q, FANG X L, et al. Adaptive optimal fuzzy logic based energy management in multi-energy microgrid considering operational uncertainties[J]. Applied Soft Computing, 2021, 98: 106882.
doi: 10.1016/j.asoc.2020.106882 |
[40] | 张景瑞, 刘厚德. 基于群体智能的电力系统优化调度理论与方法[M]. 北京: 清华大学出版社, 2016. |
[41] | 肖白, 郭蓓. 配电网规划研究综述与展望[J]. 电力自动化设备, 2018, 38(12):200-211,217. |
XIAO Bai, GUO Bei. Review and prospect of distribution network planning[J]. Electric Power Automation Equipment, 2018, 38(12):200-211,217. | |
[42] |
刘吉臻, 王海东, 李明扬. 含风电的电力系统机组组合问题研究综述[J]. 电力建设, 2014, 35(12):38-45.
doi: 10.3969/j.issn.1000-7229.2014.12.007 |
LIU Jizhen, WANG Haidong, LI Mingyang. Review on unit commitment of power systems with wind power integration[J]. Electric Power Construction, 2014, 35(12):38-45.
doi: 10.3969/j.issn.1000-7229.2014.12.007 |
|
[43] | MAHMOOD A R, VAN HASSELT H P, SUTTON R S. Weighted importance sampling for off-policy learning with linear function approximation[J]. Advances in Neural Information Processing Systems, 2014, 27. |
[44] |
PEYGHAMI M R, HAFSHEJANI S F, SHIRVANI L. Complexity of interior-point methods for linear optimization based on a new trigonometric kernel function[J]. Journal of Computational and Applied Mathematics, 2014, 255: 74-85.
doi: 10.1016/j.cam.2013.04.039 |
[45] |
VARAGNOLO D, ZANELLA F, CENEDESE A, et al. Newton-Raphson consensus for distributed convex optimization[J]. IEEE Transactions on Automatic Control, 2015, 61(4): 994-1009.
doi: 10.1109/TAC.2015.2449811 |
[46] | 何小宇, 张粒子, 谢国辉. 改进的拉格朗日松弛法求解机组组合问题[J]. 电力系统保护与控制, 2010, 38(17):16-21. |
HE Xiaoyu, ZHANG Lizi, XIE Guohui. Unit commitment using an improved Lagrangian relaxation method[J]. Power System Protection and Control, 2010, 38(17):16-21. | |
[47] | 龙军, 莫群芳, 曾建. 基于随机规划的含风电场的电力系统节能优化调度策略[J]. 电网技术, 2011, 35(9):133-138. |
LONG Jun, MO Qunfang, ZENG Jian. A stochastic programming based short-term optimization scheduling strategy considering energy conservation for power system containing wind farms[J]. Power System Technology, 2011, 35(9):133-138. | |
[48] |
RAHMANIANI R, CRAINIC T G, GENDREAU M, et al. The Benders decomposition algorithm: A literature review[J]. European Journal of Operational Research, 2017, 259(3): 801-817.
doi: 10.1016/j.ejor.2016.12.005 |
[49] |
ZENG B, ZHAO L. Solving two-stage robust optimization problems using a column-and-constraint generation method[J]. Operations Research Letters, 2013, 41(5): 457-461.
doi: 10.1016/j.orl.2013.05.003 |
[50] | 张海波, 申杰, 王国荣, 等. 考虑无功设备动作的交直流电网日前两阶段随机优化调度[J]. 电力系统自动化, 2022, 46(8):133-142. |
ZHANG Haibo, SHEN Jie, WANG Guorong, et al. Day-ahead two-stage stochastic optimal dispatch of AC/DC power grid considering reactive power equipment operation[J]. Automation of Electric Power Systems, 2022, 46(8):133-142. | |
[51] | 崔杨, 郭福音, 仲悟之, 等. 多重不确定性环境下的综合能源系统区间多目标优化调度[J]. 电网技术, 2022, 46(8):2964-2975. |
CUI Yang, GUO Fuyin, ZHONG Wuzhi, et al. Interval multi-objective optimal dispatch of integrated energy system under multiple uncertainty environment[J]. Power System Technology, 2022, 46(8):2964-2975. | |
[52] | 王守相, 王栋, 韩亮. 考虑不确定性的微网日前经济优化调度区间线性规划方法[J]. 电力系统自动化, 2014, 38(24):5-11,47. |
WANG Shouxiang, WANG Dong, HAN Liang. Interval linear programming method for day-ahead optimal economic dispatching of microgrid considering uncertainty[J]. Automation of Electric Power Systems, 2014, 38(24):5-11,47. | |
[53] |
刘子祺, 苏婷婷, 何佳阳, 等. 基于多目标粒子群算法的配电网储能优化配置研究[J]. 综合智慧能源, 2023, 45(6): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.06.002 |
LIU Ziqi, SU Tingting, HE Jiayang, et al. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm[J]. Integrated Intelligent Energy, 2023, 45(6): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.06.002 |
|
[54] |
王永林, 白永峰, 孔祥山, 等. 基于CNN-LSTM算法的脱硝优化控制模型研究[J]. 综合智慧能源, 2023, 45(6): 25-33.
doi: 10.3969/j.issn.2097-0706.2023.06.004 |
WANG Yonglin, BAI Yongfeng, KONG Xiangshan, et al. Study on denitration optimization control model based on CNN-LSTM algorithm[J]. Integrated Intelligent Energy, 2023, 45(6): 25-33.
doi: 10.3969/j.issn.2097-0706.2023.06.004 |
[1] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[2] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[3] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[4] | 魏夕凯, 谭效时, 林明, 程俊杰, 向可祺, 丁书欣. 2005—2035年全国电网碳排放因子的计算与预测[J]. 综合智慧能源, 2024, 46(3): 72-78. |
[5] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[6] | 胡超, 彭文河, 方支剑. 基于光储充电站的电动汽车分层优化调度[J]. 综合智慧能源, 2023, 45(9): 11-17. |
[7] | 乔力晖, 李明澈, 张睿, 方宗杰. 直流微网蓄电池-SMES混合储能系统容量配置方法[J]. 综合智慧能源, 2023, 45(9): 59-64. |
[8] | 闫丽梅, 胡汶硕. 基于复功率分布矩阵的电力系统碳流追踪方法[J]. 综合智慧能源, 2023, 45(8): 1-10. |
[9] | 李方一, 李楠, 周琰, 谢武. 基于多维数据与深度学习的区域发电碳排放因子预测研究[J]. 综合智慧能源, 2023, 45(8): 11-17. |
[10] | 何沭纬, 韩颖慧, 徐文斌, 张元勋, 单玉龙, 余运波. 不同能源策略下北京市私有机动车辆CO2排放系统仿真模拟[J]. 综合智慧能源, 2023, 45(8): 26-35. |
[11] | 李菲菲, 徐绘薇, 王舒泓, 崔金栋. 吉林省农业碳排放测度分析及影响因素研究[J]. 综合智慧能源, 2023, 45(8): 36-43. |
[12] | 郁海彬, 高亦凌, 陆增洁, 董帅, 鲁林, 任逸之. 计及需求响应的风-火-储-碳捕集多源参与深度调峰市场的低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 80-89. |
[13] | 李宜哲, 王丹, 贾宏杰, 周天烁, 曹逸滔, 张帅, 刘佳委. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7): 22-29. |
[14] | 曾慧, 杜源, 李涛, 薛屹洵, 孙开元, 夏天, 孙宏斌. 考虑碳交易与绿证交易的电-热耦合园区低碳规划[J]. 综合智慧能源, 2023, 45(2): 22-29. |
[15] | 江婷, 赵雅姣. 基于燃气分布式的综合能源系统碳减排分析[J]. 综合智慧能源, 2022, 44(9): 27-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||