综合智慧能源 ›› 2024, Vol. 46 ›› Issue (4): 24-33.doi: 10.3969/j.issn.2097-0706.2024.04.004

• 综合能源系统资源规划 • 上一篇    下一篇

基于场景扩充的低碳综合能源系统高可靠性容量规划方法

陈勇1(), 肖雷鸣1,*(), 王井南2, 吴健2   

  1. 1.杭州市电力设计院有限公司余杭分公司,杭州 311199
    2.国网浙江省电力有限公司 杭州市余杭区供电公司,杭州 311121
  • 收稿日期:2023-10-12 修回日期:2023-11-17 出版日期:2024-04-25
  • 通讯作者: *肖雷鸣(1996),男,助理工程师,从事综合能源系统规划及调控方面研究,xlm997632@163.com
  • 作者简介:陈勇(1978),男,工程师,从事电力系统低碳发输变电及供配电以及新能源消纳等方面的研究,cy940515@163.com
  • 基金资助:
    浙江大有集团有限公司科技项目(DY2022-21)

Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion

CHEN Yong1(), XIAO Leiming1,*(), WANG Jingnan2, WU Jian2   

  1. 1. Yuhang Branch of Hangzhou Electric Power Design Institute Company Limited, Hangzhou 311199, China
    2. Hangzhou Yuhang District Power Supply Company, State Grid Zhejiang Electric Power Company Limited,Hangzhou 311121,China
  • Received:2023-10-12 Revised:2023-11-17 Published:2024-04-25
  • Supported by:
    Technology Project of Zhejiang Dayou Group Company Limited(DY2022-21)

摘要:

为应对全球极端天气的增多以及低碳供能的迫切需求,协同本地多种供能资源的综合能源系统(IES)被认为是提高能源效率和减少碳排放的有效范式。由于IES中风、光等可再生能源出力和冷、热、电多元供能需求的不确定性以及碳排放的限制,提出了一种综合考虑系统经济成本、本地供能可靠性和碳排放成本的IES容量规划优化方法,该方法结合数据驱动的去噪扩散模型对IES运行场景进行扩充,提升了优化模型在不确定条件下求解的可靠性。实际案例数据的仿真结果表明,与传统的规划方法相比,所提出规划方案的运行成本降低了34.5%,碳排放减少了39.4%。

关键词: 综合能源系统, 多目标优化, 去噪扩散模型, 场景扩充, 数据驱动模型, 低碳供能

Abstract:

In the context of addressing frequent extreme weather around the world and urgent needs for low-carbon energy supply, an integrated energy system (IES) that can couple multiple local energy sources is considered to be an effective paradigm for improving energy efficiency and reducing carbon emissions. Due to the limit of carbon emissions,the uncertain outputs of various renewable energy sources in an IES ,and unstable demands on cold, heat and electricity, an optimal capacity planning method aiming at optimizing the economic cost, local energy supply reliability and carbon emission cost of the IES is proposed. The planning method can expand the IES operation scenarios with the help of data-driven denoising diffusion model. It improves the reliability of the optimization model under uncertain conditions. Based on the simulation experiment on actual case data, the results show that compared with the traditional planning method, the proposed planning method reduces the operating cost by 34.5%, and reduces the carbon emission by 39.4%.

Key words: integrated energy system, multi-objective optimization, denoising diffusion probabilistic model, scenario generation, data-driven model, low-carbon energy supply

中图分类号: