综合智慧能源

• •    

基于多重降噪与递归图的变压器故障诊断方法

张萍, 伍掌, 刘凤, 刘峰, 李键   

  1. 国网浙江省电力有限公司杭州市余杭区供电公司, 浙江 311100 中国
    杭州电力设备制造有限公司余杭群力成套电气制造分公司, 浙江 311100 中国
    国网浙江省电力有限公司杭州市临平区供电公司, 浙江 311199 中国
    东北电力大学机械工程学院, 吉林 132012 中国
  • 收稿日期:2025-02-25 修回日期:2025-04-29
  • 基金资助:
    吉林省科技发展计划项目(20220508014RC)

Transformer Fault Diagnosis Method Based on Multiple Noise Reduction and Recurrence Plot

  1. , 311100, China
    , 311199, China
    , 132012, China
  • Received:2025-02-25 Revised:2025-04-29

摘要: 针对噪声干扰情况下变压器振动信号特征难以提取,时间信息利用率低的问题,提出基于多重降噪与递归图(Recurrence Plot,RP)相结合的故障诊断方法。首先,通过完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)联合自适应小波阈值对振动信号进行多重降噪;其次,采用递归分析将时序信号构造为递归图,保留时间依赖性和非线性动力学特征;最后利用CNN在图像处理上的优势,以递归图为输入,提取空间特征,从而实现变压器的故障诊断。结果表明:本文所提方法误报率低且诊断准确率为98.125%,证明了该方法能有效适用于变压器振动信号故障诊断。

关键词: 变压器, 故障诊断, 完全自适应噪声集合经验模态分解, 递归分析, 卷积神经网络

Abstract: Aiming at the problem of difficult to extract the features of transformer vibration signal and low utilization of time information under noise interference, a fault diagnosis method based on the combination of multiple noise reduction and Recurrence Plot (RP) is proposed. First, the vibration signal is subjected to multiple noise reduction by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) combined with adaptive wavelet thresholding; Second, recursive analysis is used to construct the time-series signals as recurrence maps, preserving the time-dependent and nonlinear dynamics features; Finally, the advantages of CNN in image processing are utilized to extract spatial features using recursive graphs as input for fault diagnosis of transformers. The results show that the method proposed in this paper has a low false alarm rate and a diagnostic accuracy of 98.125%, which proves that the method can be effectively applied to transformer vibration signal fault diagnosis.

Key words: Transformer, Fault diagnosis, CEEMDAN, Recursive analysis, Convolutional neural network