综合智慧能源

• •    

考虑风、光出力时空相关性的电-氢协同储能系统经济性优化调度研究

王芊瑞, 阮景昕, 王跃社   

  1. 西安交通大学, 710049
    国电南瑞科技股份有限公司, 中国
  • 收稿日期:2025-05-15 修回日期:2025-07-21
  • 基金资助:
    国家重点研发计划项目

Economic Optimization Scheduling of Electric-Hydrogen Synergistic Energy Storage System Considering the Spatial and Temporal Correlation of Renewable Energy Generation

  1. , 710049,
    , , China
  • Received:2025-05-15 Revised:2025-07-21

摘要: 我国风能、太阳能资源富集地与负荷存在时空错配问题。利用同一区域内风能和太阳能之间的相关性与互补性,采用电-氢协同储能模式,是缓解可再生能源出力对电网不良影响的有效技术路径。本文使用非参数核密度估计法拟合风、光出力数据的概率分布规律,结合Copula理论生成计及风光时空相关性的时序场景;考虑风光发电的相关性,进一步建立了电-氢协同储能综合能源系统的经济性日前优化调度模型,并使用自适应模拟退火粒子群优化算法求解。仿真结果说明,相比基本粒子群算法,该模型的自适应模拟退火粒子群优化算法具有更高的求解速度与精度;在电-氢耦合模式下,结合电网售电采用峰谷分时电价机制,基于日前经济优化调度模型的调度方案节省了约19%的全天运行费用,实现了波动性新能源的就地消纳,为友好型规模化电网的构建提供电-氢柔性匹配方法。

关键词: 电-氢协同, Copula理论, 核密度估计, 经济性, 优化调度

Abstract: The wind and solar energy resources are not well aligned with the load center in China, resulting in a temporal and spatial mismatch. Utilizing the correlation and complementarity between wind and solar within the same region, adopting an electric-hydrogen synergistic energy storage mode is an effective technical path to significantly mitigate the effects of renewable energy output on the power grid. In this paper, the non-parametric kernel density estimation method is employed to fit the wind and solar output data. By employing the Copula theory, a method for generating spatio-temporal scenarios considering the correlation of wind and solar power generations is proposed. By considering the correlation of wind and solar power generation, a model for the economic day-ahead optimization scheduling problem of the electric-hydrogen synergistic energy storage system is further developed, and the adaptive simulated annealing particle swarm optimization algorithm is adopted to solve the scheduling model. The simulation results indicate that compared with the basic particle swarm optimization algorithm, the adaptive simulated annealing particle swarm optimization algorithm of this model possesses higher solution speed and accuracy. Under the electric-hydrogen coupling mode, combined with the peak-valley time-of-sale price mechanism, the scheduling scheme based on the day-ahead economic optimization scheduling model saves approximately 19% of the full-day operation cost. Adopting this scheme can realize the on-site consumption of fluctuating new energy sources, and offer a flexible power-hydrogen matching approach for building friendly scale-up grids.

Key words: Electric-Hydrogen, Copula theory, kernel density estimation method, Economy, Optimize scheduling