综合智慧能源 ›› 2025, Vol. 47 ›› Issue (12): 25-33.doi: 10.3969/j.issn.2097-0706.2025.12.003

• 储能技术 • 上一篇    下一篇

基于灰狼优化算法和组合核函数GPR模型的锂电池剩余使用寿命预测

胡林静(), 李在伟()   

  1. 内蒙古工业大学 电力学院,呼和浩特 010080
  • 收稿日期:2025-08-28 修回日期:2025-09-19 出版日期:2025-12-25
  • 作者简介:胡林静(1975),女,副教授,硕士,从事热工过程控制、新能源利用等方面的研究hulinjing666@163.com
    李在伟(1999),男,硕士生,从事新能源利用方面的研究,lizaiweijiayou@126.com
  • 基金资助:
    内蒙古自然科学基金项目(2025LHMS05031)

Prediction of remaining useful life of lithium batteries based on grey wolf optimization and combined kernel function GPR model

HU Linjing(), LI Zaiwei()   

  1. College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
  • Received:2025-08-28 Revised:2025-09-19 Published:2025-12-25
  • Supported by:
    Inner Mongolia Natural Science Foundation Project(2025LHMS05031)

摘要:

准确地预测锂离子电池剩余使用寿命(RUL)可以帮助用户制定合理的维护策略。高斯过程回归(GPR)算法作为一种数据驱动方法能够很好地捕捉特征和变量之间的非线性关系,被广泛应用于锂电池RUL估计。传统的单核GPR对特征捕捉能力不足,为此提出一种基于灰狼优化算法(GWO)的组合核GPR模型。通过组合核函数来增强模型对非线性特征的捕捉能力,同时利用GWO解决组合核函数超参数优化中的困难。采用美国国家航空航天局(NASA)锂电池循环老化数据集进行对该模型进行验证,并将其与基于粒子群优化(PSO)的单核GPR模型进行对比。试验结果显示:GWO优化的组合核GPR模型较PSO优化的单核GPR模型的均方根误差(RMSE)下降了37.89%,平均绝对误差(MAE)下降了70.42%,对容量衰减的捕捉能力更强。结果表明相比于传统GPR模型,灰狼优化的组合核GPR模型对锂电池RUL预测的准确性更高。

关键词: 锂离子电池, 剩余使用寿命, 高斯过程回归, 灰狼优化算法, 电池老化, 容量衰减, 预测误差, 粒子群优化算法

Abstract:

Accurately predicting the remaining useful life (RUL) of lithium-ion batteries can help users formulate reasonable maintenance strategies. As a data-driven method, Gaussian process regression (GPR) algorithm can effectively capture the nonlinear relationship between features and variables, and thus is widely used in the RUL estimation of lithium batteries. To address the deficiency of traditional single-kernel GPR in feature capture, a combined kernel GPR model based on the grey wolf optimization (GWO) algorithm was proposed. By combining kernel functions, the model's ability to capture nonlinear features was enhanced, and the GWO algorithm was utilized to overcome the difficulty in optimizing the hyperparameters of the combined kernel function. The NASA lithium battery cycle aging dataset was adopted to verify this model, and the single-kernel GPR model based on particle swarm(PSO) optimization was selected for comparison. The experimental results showed that the GWO-optimized combined kernel GPR model achieved a 37.89% reduction in root mean square error (RMSE) and a 70.42% reduction in mean absolute error (MAE) compared with the PSO-optimized single-kernel GPR model, demonstrating a stronger ability to capture capacity degradation. The results indicate that compared with the traditional GPR model, the GWO-optimized combined kernel GPR model has higher accuracy for the RUL prediction of lithium batteries.

Key words: lithium-ion battery, remaining useful life, Gaussian process regression, grey wolf optimization algorithm, battery aging, capacity degradation, prediction error, particle swarm optimization

中图分类号: