综合智慧能源 ›› 2025, Vol. 47 ›› Issue (12): 34-45.doi: 10.3969/j.issn.2097-0706.2025.12.004
收稿日期:2025-05-15
修回日期:2025-07-22
出版日期:2025-12-25
通讯作者:
* 王跃社(1967),男,教授,博士生导师,博士,从事太阳能热发电基础理论及高新技术等方面的研究,wangys@mail.xjtu.edu.cn。作者简介:王芊瑞(2000),女,硕士生,从事太阳能发电方面的研究,1542110966@qq.com。
基金资助:
WANG Qianrui1(
), RUAN Jingxin2, WANG Yueshe1,*(
)
Received:2025-05-15
Revised:2025-07-22
Published:2025-12-25
Supported by:摘要:
我国风能、太阳能资源富集地与负荷存在时空错配问题,利用同一区域内风能和太阳能之间的相关性与互补性,采用电-氢协同储能模式,是缓解可再生能源出力对电网不良影响的有效技术路径。使用非参数核密度估计法拟合风、光出力数据的概率分布规律,结合Copula理论生成计及风光时空相关性的时序场景;考虑风、光发电的相关性,进一步建立了电-氢协同储能综合能源系统的经济性日前优化调度模型,并使用自适应模拟退火粒子群优化(ASA-PSO)算法求解。仿真结果表明:相比于基本PSO算法,ASA-PSO算法具有更高的求解速度与精度;电-氢协同储能系统的日前经济优化调度方案节省了约19%的日运行成本,可以避免系统在电价高峰时段大量购入电力并实现了波动性新能源的就地消纳,可为友好型规模化电网的构建提供电-氢柔性匹配方法。
中图分类号:
王芊瑞, 阮景昕, 王跃社. 考虑风、光出力时空相关性的电-氢协同储能系统经济性优化调度研究[J]. 综合智慧能源, 2025, 47(12): 34-45.
WANG Qianrui, RUAN Jingxin, WANG Yueshe. Economic optimal scheduling of electricity-hydrogen coordinated energy storage system considering spatiotemporal correlation of wind and photovoltaic power outputs[J]. Integrated Intelligent Energy, 2025, 47(12): 34-45.
表6
各时段风、光出力联合分布模型所用Copula函数及其拟合参数
| 时段 | Copula函数 | 拟合参数 | 时段 | Copula函数 | 拟合参数 |
|---|---|---|---|---|---|
| 5 | Gumbel | 3.027 6 | 13 | Frank | 3.039 4 |
| 6 | Gumbel | 2.009 8 | 14 | Frank | 4.365 9 |
| 7 | Gumbel | 1.440 6 | 15 | Frank | 5.620 1 |
| 8 | Gumbel | 1.353 3 | 16 | Frank | 6.279 9 |
| 9 | Gumbel | 1.272 6 | 17 | Gumbel | 2.230 7 |
| 10 | Gumbel | 1.308 7 | 18 | Gumbel | 2.010 4 |
| 11 | Gumbel | 1.363 3 | 19 | Gumbel | 1.783 8 |
| 12 | Frank | 2.155 5 |
| [1] |
许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(3): 89-99.
doi: 10.15302/J-SSCAE-2022.03.010 |
|
XU Chuanbo, LIU Jianguo. Hydrogen energy storage in China's new-type power system: Application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24(3): 89-99.
doi: 10.15302/J-SSCAE-2022.03.010 |
|
| [2] |
韩世旺, 赵颖, 张兴宇, 等. 面向碳中和的新型电力系统氢储能调峰技术研究[J]. 综合智慧能源, 2022, 44(9): 20-26.
doi: 10.3969/j.issn.2097-0706.2022.09.003 |
|
HAN Shiwang, ZHAO Ying, ZHANG Xingyu, et al. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(9): 20-26.
doi: 10.3969/j.issn.2097-0706.2022.09.003 |
|
| [3] |
GOMES I L R, POUSINHO H M I, MELICIO R, et al. Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market[J]. Energy, 2017, 124:310-320.
doi: 10.1016/j.energy.2017.02.080 |
| [4] |
CHOI J, EOM H, BAEK S M. A wind power probabilistic model using the reflection method and multi-kernel function kernel density estimation[J]. Energies, 2022, 15(24):9436.
doi: 10.3390/en15249436 |
| [5] |
GUAN J S, LIN J, GUAN J J, et al. A novel probabilistic short-term wind energy forecasting model based on an improved kernel density estimation[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23791-23808.
doi: 10.1016/j.ijhydene.2020.06.209 |
| [6] |
朱怡莹, 周荣生, 罗龙波. 考虑需求响应与光伏不确定性的电力系统经济调度[J]. 太阳能学报, 2023, 44 (1): 62-68.
doi: 10.19912/j.0254-0096.tynxb.2021-0844 |
|
ZHU Yiying, ZHOU Rongsheng, LUO Longbo. Economic dispatch of power system considering demand response and pv uncertainty[J]. Acta Energiae Solaris Sinica, 2023, 44 (1): 62-68.
doi: 10.19912/j.0254-0096.tynxb.2021-0844 |
|
| [7] |
MAISAM W, BARAA M, EL-FOULY T H M, et al. Unbiased cross-validation kernel density estimation for wind and PV probabilistic modelling[J]. Energy Conversion and Management, 2022, 266:115811.
doi: 10.1016/j.enconman.2022.115811 |
| [8] |
LI Y, ZOU Y, TAN Y, et al. Optimal stochastic operation of integrated low-carbon electric power, natural gas, and heat delivery system[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 273-283.
doi: 10.1109/TSTE.2017.2728098 |
| [9] | 高圣溥. 面向电力系统规划的风光出力序列生成和场景缩减方法[D]. 重庆: 重庆大学, 2021. |
| GAO Shengpu. Wind/photovoltaic power time series generation and scenarios reduction methods for power system planning[D]. Chongqing: Chongqing University, 2021. | |
| [10] |
WANG Z, WANG W S, LIU C, et al. Probabilistic forecast for multiple wind farms based on regular vine Copulas[J]. IEEE Transactions on Power Systems, 2018, 33(1): 578-589.
doi: 10.1109/TPWRS.2017.2690297 |
| [11] | PAN Y, SHI L B, NI Y X. Modelling of multiple wind farms output correlation based on Copula theory[J]. The Journal of Engineering, 2017, 13:2303-2308. |
| [12] |
XIE Z Q, JI T Y, LI M S, et al. Quasi-Monte Carlo based probabilistic optimal power flow considering the correlation of wind speeds using Copula function[J]. IEEE Transactions on Power Systems, 2018, 33(2): 2239-2247.
doi: 10.1109/TPWRS.2017.2737580 |
| [13] |
SUN C, BIE Z H, XIE M, et al. Fuzzy Copula model for wind speed correlation and its application in wind curtailment evaluation[J]. Renewable Energy, 2016, 93: 68-76.
doi: 10.1016/j.renene.2016.02.049 |
| [14] | 朱晓荣, 金绘民, 王羽凝. 基于混合高斯模型与Copula函数结合的光伏电站功率相依结构建模[J]. 太阳能学报, 2019, 48(7): 1912-1919. |
| ZHU Xiaorong, JIN Huimin, WANG Yuning. Analysis on dependence structure among photovoltaic power outputs based on combination of Copula function and Gaussian mixture model[J]. Acta Energiae Solaris Sinica, 2019, 48(7): 1912-1919. | |
| [15] |
SCHMIDT J, CANCELLA R, PEREIRA O A. The role of wind power and solar PV in reducing risks in the Brazilian hydro-thermal power system[J]. Energy, 2016, 115:1748-1757.
doi: 10.1016/j.energy.2016.03.059 |
| [16] | 钟嘉庆, 李茂林, 江静, 等. 基于Copula理论的风/光出力预测误差分析方法的研究[J]. 电工电能新技术, 2017, 36(6): 39-46. |
| ZHONG Jiaqing, LI Maolin, JIANG Jing, et al. Method of wind/solar output forecast error analysis based on Copula theory[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(6): 39-46. | |
| [17] |
GAO J W, YANG Y, GAO F J, et al. Optimization of electric vehicles based on Frank-Copula-GlueCVaR combined wind and photovoltaic output scheduling research[J]. Energies, 2021, 14(19):6080.
doi: 10.3390/en14196080 |
| [18] |
HAN Q K, CHU F L. Directional wind energy assessment of China based on nonparametric Copula models:ScienceDirect[J]. Renewable Energy, 2020, 164:1334-1349.
doi: 10.1016/j.renene.2020.10.149 |
| [19] |
ZHENG W D, ZHANG M, LI Y X, et al. Optimal dispatch for reversible solid oxide cell-based hydrogen/electric vehicle aggregator via stimuli-responsive charging decision estimation[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8502-8513.
doi: 10.1016/j.ijhydene.2021.12.157 |
| [20] | 任宇路, 程昱舒, 张雪瑞, 等. 碳交易下含氢储能的综合能源系统运行优化[J/OL]. 电测与仪表, 2024: 1-9 (2024-06-21)[2025-05-10]. https://link.cnki.net/urlid/23.1202.th.20240621.1203.004. |
| REN Yulu, CHENG Yushu, ZHANG Xuerui, et al. Operation optimization of integrated energy system with hydrogen storageunder carbon trading[J/OL]. Electrical Measurement & Instrumentation, 2024:1-9(2024-06-21)[2025-05-10]. https://link.cnki.net/urlid/23.1202.th.2024 | |
| [21] |
VISHNU S, PRZEMYSLAW J, MICHAL J, et al. Microgrid energy management using metaheuristic optimization algorithms[J]. Applied Soft Computing, 2023, 134: 109981.
doi: 10.1016/j.asoc.2022.109981 |
| [22] |
SULAIMAN A A, ALROBAIAN A A. Optimization of combined heat and power systems by meta-heuristic algorithms: An overview[J]. Energies, 2022, 15(16):5977.
doi: 10.3390/en15165977 |
| [23] |
ELLAHI M, ABBAS G. A hybrid metaheuristic approach for the solution of renewables-incorporated economic dispatch problems[J]. IEEE Access, 2020, 8:127608-127621.
doi: 10.1109/Access.6287639 |
| [24] |
ASHTARI B, ALIZADEH BIDGOLI M, BABAEI M, et al. A two-stage energy management framework for optimal scheduling of multi-microgrids with generation and demand forecasting[J]. Neural Computing and Applications, 2022, 34(14):12159-12173.
doi: 10.1007/s00521-022-07103-w |
| [25] |
XU X Y, YAN Z, XU S L. Estimating wind speed probability distribution by diffusion-based kernel density method[J]. Electric Power Systems Research, 2015, 121:28-37.
doi: 10.1016/j.epsr.2014.11.029 |
| [26] |
王海鸣, 张润之, 周家辉, 等. 离网式风光互补制氢合成绿氨系统容量配置优化分析[J]. 综合智慧能源, 2024, 46(11): 73-82.
doi: 10.3969/j.issn.2097-0706.2024.11.009 |
|
WANG Haiming, ZHANG Runzhi, ZHOU Jiahui, et al. Optimal capacity configuration of off-grid wind-solar hybrid hydrogen production and green ammonia synthesis system[J]. Integrated Intelligent Energy, 2024, 46(11): 73-82.
doi: 10.3969/j.issn.2097-0706.2024.11.009 |
|
| [27] | 宋宇, 李涵, 楚皓翔, 等. 计及可靠性的风光互补发电系统容量优化配比研究[J]. 电气技术, 2022(6): 49-58. |
| SONG Yu, LI Han, CHU Haoxiang, et al. Optimal proportion study of wind-solar hybrid generation system considering reliability[J]. Electrical Engineering, 2022(6): 49-58. | |
| [28] |
张元曦, 杨国华, 杨娜, 等. 基于K-means聚类的LSTM-SVR-DE光伏功率组合预测[J]. 综合智慧能源, 2025, 47(2): 71-78.
doi: 10.3969/j.issn.2097-0706.2025.02.007 |
|
ZHANG Yuanxi, YANG Guohua, YANG Na, et al. Photovoltaic power prediction based on K-means clustering and the LSTM-SVR-DE model[J]. Integrated Intelligent Energy, 2025, 47(2): 71-78.
doi: 10.3969/j.issn.2097-0706.2025.02.007 |
|
| [29] | 闫群民, 马瑞卿, 马永翔, 等. 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48(4): 120-127. |
| YAN Qunmin, MA Ruiqing, MA Yongxiang, et al. Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University, 2021, 48(4): 120-127. |
| [1] | 窦翔, 李卓群, 张哲, 温鑫, 赵勃, 韩燕, 仲声. 基于CNN-BiLSTM-RF-KDE的综合能源系统负荷预测[J]. 综合智慧能源, 2025, 47(9): 60-70. |
| [2] | 张元曦, 杨国华, 马龙腾, 马鑫, 刘耀泽. 基于改进DE算法的园区微电网风光储优化配置[J]. 综合智慧能源, 2025, 47(9): 71-79. |
| [3] | 周凯, 吴炎喜, 黄宇翔, 杨景豪, 樊小朝, 李建伟, 魏志宗, 滕建, 陈历, 叶琴, 张浩, 姜军南. 大海拔高差地区固体流大规模重力储能技术[J]. 综合智慧能源, 2025, 47(8): 1-9. |
| [4] | 甄文喜, 马喜平, 戴跃洪, 牛炜, 陈柏旭, 曾桂. 基于中间层控制的风-储自同步调频策略研究[J]. 综合智慧能源, 2025, 47(8): 21-29. |
| [5] | 褚龙浩, 李笑竹. 共享储能参与下的多类型电能交易投标策略及价值分配机制[J]. 综合智慧能源, 2025, 47(8): 30-39. |
| [6] | 谭甲群, 吕如轩, 鞠洪晋, 洪春雪, 肖海平, 雷兢, 韩振兴. 基于改进秃鹰搜索算法的风光火储综合能源系统优化调度策略研究[J]. 综合智慧能源, 2025, 47(8): 68-76. |
| [7] | 洪春雪, 肖海平, 谭甲群, 吕如轩, 陈燕鹏, 巨星. 考虑容量电价的风光火储能源基地多目标优化调度[J]. 综合智慧能源, 2025, 47(7): 1-11. |
| [8] | 陈亮, 刘桂英, 粟时平, 唐长久, 王辰浩, 郭思桐. 基于双层网络PER-MADDPG算法的综合能源系统协调优化调度[J]. 综合智慧能源, 2025, 47(7): 44-54. |
| [9] | 郑昊宇, 周家辉, 仝冰, 王海鸣, 徐钢, 张资悦. 配置压缩空气储能的绿氢系统容量配置和运行调度优化研究[J]. 综合智慧能源, 2025, 47(7): 64-70. |
| [10] | 张德斌, 林文野, 何梓轩, 岳心如, 宋文吉, 冯自平, FARID Mohammed Mehdi, USHAK DE GRAGEDA Svetlana Nikolaevna. 计及广义储能的建筑产消者社区综合能源系统日前调度优化[J]. 综合智慧能源, 2025, 47(7): 82-92. |
| [11] | 李晓宁, 孙娜, 黄阿敏, 董海鹰. 基于蛇优化算法的PEMFC空气供给系统模糊自抗扰控制[J]. 综合智慧能源, 2025, 47(6): 57-73. |
| [12] | 王成, 邵冲, 何欣, 董海鹰. 基于MOIBKA算法的电化学储能电站最优功率分配[J]. 综合智慧能源, 2025, 47(6): 74-84. |
| [13] | 叶幸, 邱辰, 艾琳, 辛颂旭, 郭雁珩. “双碳”目标下可再生能源绿证与碳交易衔接机制的思考[J]. 综合智慧能源, 2025, 47(5): 12-20. |
| [14] | 陈浩, 马刚, 钱达, 马健, 彭乐瑶. 绿证-碳交易机制下考虑阶梯需求响应的区域综合能源系统优化调度[J]. 综合智慧能源, 2025, 47(5): 21-30. |
| [15] | 张文博, 秦文萍, 刘佳昕, 陈玉梅, 刘博洋, 赵桉霆. 绿证-电-碳耦合市场下计及需求响应与租赁共享储能的VPP鲁棒优化调度策略[J]. 综合智慧能源, 2025, 47(5): 31-40. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

