综合智慧能源 ›› 2025, Vol. 47 ›› Issue (12): 46-56.doi: 10.3969/j.issn.2097-0706.2025.12.005

• 储能与多能耦合 • 上一篇    下一篇

基于储能的寒冷地区住宅多能源供能多目标优化研究

闫京1(), 李萌2, 关宝良1, 孟思宇1, 樊颜搏2, 王凤龙1, 杨尚峰1, 杨众杨1, 熊亚选2,*()   

  1. 1.北京天岳恒房屋经营管理有限公司,北京 100032
    2.北京建筑大学 供热、供燃气、通风及空调工程北京市重点实验室,北京 100044
  • 收稿日期:2025-08-19 修回日期:2025-10-10 出版日期:2025-12-25
  • 通讯作者: * 熊亚选(1977),男,教授,博士,从事低碳储能和供热系统精准节能方面的研究,xiongyaxuan@bucea.edu.cn
  • 作者简介:闫京(1974),男,高级工程师,从事供暖运行管理方面的研究,tyhgongnuan@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFB2405203)

Multi-objective optimization of multi-energy supply for residential buildings in cold regions based on energy storage

YAN Jing1(), LI Meng2, GUAN Baoliang1, MENG Siyu1, FAN Yanbo2, WANG Fenglong1, YANG Shangfeng1, YANG Zhongyang1, XIONG Yaxuan2,*()   

  1. 1. Beijing Tianyueheng Housing Operation and Management Company Limited, Beijing 100032, China
    2. Beijing Key Laboratory of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2025-08-19 Revised:2025-10-10 Published:2025-12-25
  • Supported by:
    National Key R&D Program of China(2022YFB2405203)

摘要:

针对寒冷地区住宅建筑冬季供暖需求高、能源消耗大及碳排放压力重的现状,同时考虑电能与热能存储的耦合效应,构建了集成光伏发电、空气源热泵、燃气锅炉、储能电池与高温储热装置的综合能源系统多目标优化模型,对比了3种优化算法在5个异质性气候城市的性能。基于北京、郑州、银川、拉萨和喀什市的气象数据及在EnergyPlus中建立的建筑热模型,确定了基准能源需求。结合Matlab平台分别采用非支配排序遗传算法(NSGA-Ⅱ)、粒子群算法(PSO)和模拟退火算法(SA),进行碳排放最小化与经济成本最小化的多目标优化。结果表明:NSGA-Ⅱ在多数场景下能实现成本与碳排放的最佳权衡,综合性能最优;PSO在供暖期长的地区运行成本优化效果显著;SA则适用于寻求更低运行成本的场景,但通常伴随较高的初始投资。该优化模型能够兼顾寒冷地区住宅建筑的经济性与低碳性,可显著提升可再生能源利用率,并为寒冷气候条件下建筑综合能源系统的规划与运行提供参考。

关键词: 住宅建筑, 综合能源系统, 寒冷地区, 多目标优化, 储能

Abstract:

Aiming at the current situation of high heating demand, large energy consumption, and heavy carbon emission pressure for residential buildings in cold regions during winter, and considering the coupling effect of electrical and thermal energy storage, a multi-objective optimization model of an integrated energy system incorporating photovoltaic power generation, air-source heat pumps, gas boilers, energy storage batteries, and high-temperature thermal storage devices was constructed. The performance of three optimization algorithms was compared across five cities with heterogeneous climates. Based on meteorological data from Beijing, Zhengzhou, Yinchuan, Lhasa, and Kashgar, along with a building thermal model established in EnergyPlus, the baseline energy demand was determined. Utilizing the Matlab platform, the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ), particle swarm optimization(PSO), and simulated annealing(SA) were employed to conduct multi-objective optimization for minimizing carbon emissions and economic cost. The results showed that the NSGA-Ⅱ achieved the best trade-off between cost and carbon emissions in most scenarios, demonstrating the optimal comprehensive performance. The PSO showed significant effectiveness in optimizing operating costs in regions with long heating periods. The SA was suitable for scenarios aiming for lower operating costs, but it was typically accompanied by higher initial investment. This optimization model can balance the economic and low-carbon performance of residential buildings in cold regions, significantly improve the utilization rate of renewable energy, and provide a reference for the planning and operation of building integrated energy systems under cold climate conditions.

Key words: residential buildings, integrated energy system, cold regions, multi-objective optimization, energy storage

中图分类号: