| [1] |
United Nations Environment Programme. 2024—2025 global status report for buildings and construction[R]. Nairobi: United Nations Environment Programme, 2025.
|
| [2] |
OSTERGAARD P A, DUIC N, NOOROLLAHI Y, et al. Sustainable development using renewable energy technology[J]. Renewable Energy, 2020, 146: 2430-2437.
doi: 10.1016/j.renene.2019.08.094
|
| [3] |
王可睿, 莫馥任, 李怡, 等. 夏热冬暖地区公共建筑围护结构的节能技术分析[J]. 生态城市与绿色建筑, 2015(2): 80-85.
|
|
WANG Kerui, MO Furen, LI Yi, et al. Analysis on green energy technology of public buildings in hot summer and warm winter areas[J]. Eco-City and Green Building, 2015(2): 80-85.
|
| [4] |
WANG D, YU W, ZHAO X T, et al. The influence of thermal insulation position in building exterior walls on indoor thermal comfort and energy consumption of residential buildings in Chongqing[C]// International Conference on New Energy and Future Energy System. NEES, 2016: 778-790.
|
| [5] |
牛智辉, 陈天丽, 雷艳杰. 豫中地区既有居住建筑外围护结构节能改造[J]. 施工技术, 2010, 39(S2): 438-441.
|
|
NIU Zhihui, CHEN Tianli, LEI Yanjie. Energy-saving transformation of external envelope of existing residential buildings in central Henan Province[J]. Construction Technology, 2010, 39(S2): 438-441.
|
| [6] |
黄春华, 叶勇军. 节能建筑外墙保温层厚度的经济性优化[J]. 建筑热能通风空调, 2005, 24(6): 73-76.
|
|
HUANG Chunhua, YE Yongjun. Economical optimum of insulation thickness on external wall of energy saving building[J]. Building Energy & Environment, 2005, 24(6): 73-76.
|
| [7] |
蔡悦倩. 基于风环境的建筑布局形态设计策略研究[D]. 北京: 北京交通大学, 2020.
|
|
CAI Yueqian. Research on the design strategy of architectural layout based on wind environment[D]. Beijing: Beijing Jiaotong University, 2020.
|
| [8] |
尤欣怡, 石谦飞, 胡钧璞. 以热环境节能为导向的建筑布局优化模拟分析[J]. 建筑节能(中英文), 2025, 53(2): 111-119.
|
|
YOU Xinyi, SHI Qianfei, HU Junpu. Simulation analysis of layout optimization of buildings oriented by thermal environment energy saving[J]. Building Energy Efficiency, 2025, 53(2): 111-119.
|
| [9] |
刘慧娟, 宋长衡. 基于BIM技术的绿色建筑节能设计优化研究[J]. 山西建筑, 2025, 51(2): 20-23, 81.
|
|
LIU Huijuan, SONG Changheng. Research on optimization of energy saving design of green building based on BIM technology[J]. Shanxi Architecture, 2025, 51(2): 20-23, 81.
|
| [10] |
何蓝玲. 基于改进NSGA-Ⅱ算法的绿色施工项目多目标优化研究[D]. 贵阳: 贵州大学, 2022.
|
| [11] |
WANG Y, WANG Z H, RAHMATOLLAHI N, et al. The impact of roof systems on cooling and building energy efficiency[J]. Applied Energy, 2024, 376: 124339.
doi: 10.1016/j.apenergy.2024.124339
|
| [12] |
MIRRAHIMI S, MOHAMED M F, HAW L C, et al. The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate[J]. Renewable & Sustainable Energy Reviews, 2016, 53: 1508-1519.
|
| [13] |
ATTIA S, HAMDY M, O'BRIEN W. Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design[J]. Energy and Buildings, 2013, 60: 110-124.
doi: 10.1016/j.enbuild.2013.01.016
|
| [14] |
LI K J, PAN L, XUE W P. Multi-objective optimization for energy performance improvement of residential buildings: A comparative study[J]. Energies, 2017, 10(2): 10020245.
|
| [15] |
HUSAINY A S N, MANGAVE S S, INGALE A S, et al. Innovation ecosystems and green building techniques for a sustainable future: Leveraging advanced technologies[J]. The Asian Review of Civil Engineering, 2024, 13(2): 1-10.
|
| [16] |
刘一宁, 陈柏安, 杜鹏程, 等. 基于MDLOF-iForest和M-KNN-Slope的公共建筑负荷异常数据识别与修复[J]. 综合智慧能源, 2025, 47(3): 62-72.
doi: 10.3969/j.issn.2097-0706.2025.03.006
|
|
LIU Yining, CHEN Baian, DU Pengcheng, et al. Detection and repair of abnormal load data of public buildings based on MDLOF-iForest and M-KNN-Slope[J]. Integrated Intelligent Energy, 2025, 47(3): 62-72.
doi: 10.3969/j.issn.2097-0706.2025.03.006
|
| [17] |
甄箫斐, 李尚娥, 张永恒, 等. 西北地区近零能耗建筑围护结构多目标优化研究[J]. 综合智慧能源, 2024, 46(12): 81-90.
doi: 10.3969/j.issn.2097-0706.2024.12.010
|
|
ZHEN Xiaofei, LI Shang'e, ZHANG Yongheng, et al. Research on multi-objective optimization of envelope structures for nearly zero-energy buildings in Northwest China[J]. Integrated Intelligent Energy, 2024, 46(12): 81-90.
doi: 10.3969/j.issn.2097-0706.2024.12.010
|
| [18] |
樊颜搏, 熊亚选, 李想, 等. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009
|
|
FAN Yanbo, XIONG Yaxuan, LI Xiang, et al. Advancement in multi-objective optimization for building energy use based on genetic algorithms[J]. Integrated Intelligent Energy, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009
|
| [19] |
胡开永, 刘峰, 吴秀杰, 等. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71.
doi: 10.3969/j.issn.2097-0706.2023.08.008
|
|
HU Kaiyong, LIU Feng, WU Xiujie, et al. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction[J]. Integrated Intelligent Energy, 2023, 45(8): 64-71.
doi: 10.3969/j.issn.2097-0706.2023.08.008
|
| [20] |
WANG C S, LV C X, LI P, et al. Modeling and optimal operation of community integrated energy systems: A case study from China[J]. Applied Energy, 2018, 230:1242-1254.
doi: 10.1016/j.apenergy.2018.09.042
|
| [21] |
BAHMANI R, KARIMI H, JADID S. Cooperative energy management of multi-energy hub systems considering demand response programs and ice storage[J]. International Journal of Electrical Power & Energy Systems, 2021, 130: 106904.
doi: 10.1016/j.ijepes.2021.106904
|
| [22] |
ZHENG X Y, WU G C, QIU Y W, et al. A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China[J]. Applied Energy, 2018, 210: 1126-1140.
doi: 10.1016/j.apenergy.2017.06.038
|
| [23] |
GUO J C, LIU Z J, WU X, et al. Two-layer co-optimization method for a distributed energy system combining multiple energy storages[J]. Applied Energy, 2022, 322: 119486.
doi: 10.1016/j.apenergy.2022.119486
|
| [24] |
韩叶霞. 低能耗建筑中含分布式电源的多目标优化研究[D]. 北京: 北京建筑大学, 2018.
|
|
HAN Yexia. Research on distributed power supply in low-energy buildings of multi-objective optimization[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2018.
|
| [25] |
JIANG Z, RIVERO M E N, LIU X L, et al. A novel composite phase change material for medium temperature thermal energy storage manufactured with a scalable continuous hot-melt extrusion method[J]. Applied Energy, 2021, 303: 117591.
doi: 10.1016/j.apenergy.2021.117591
|
| [26] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transaction on Evolutionary Computation, 2002, 6(2): 182-197.
doi: 10.1109/4235.996017
|
| [27] |
KOU F C, GONG Q P, ZOU Y, et al. Solar application potential and thermal property optimization of a novel zero-carbon heating building[J]. Energy and Buildings, 2023, 279: 112688.
doi: 10.1016/j.enbuild.2022.112688
|
| [28] |
JUNGHANS L, DARDE N. Hybrid single objective genetic algorithm coupled with the simulated annealing optimization method for building optimization[J]. Energy and Buildings, 2015, 86: 651-662.
doi: 10.1016/j.enbuild.2014.10.039
|
| [29] |
EVINS R. A review of computational optimisation methods applied to sustainable building design[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 230-245.
doi: 10.1016/j.rser.2013.02.004
|