Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (4): 47-51.doi: 10.3969/j.issn.2097-0706.2023.04.007
• Engineering and Application • Previous Articles Next Articles
SHANG Yongqiang1(), WANG Wenfeng1, WANG Weishu2,*(
), GUO Jiawei2, ZHENG Haonan2, GE Xuewen2
Received:
2021-01-08
Revised:
2022-03-22
Accepted:
2023-02-27
Published:
2023-04-25
Contact:
WANG Weishu
E-mail:7522051@qq.com;wangweishu@ncwu.edu.cn
Supported by:
CLC Number:
SHANG Yongqiang, WANG Wenfeng, WANG Weishu, GUO Jiawei, ZHENG Haonan, GE Xuewen. Analysis on the thermal insulation of long-distance steam heating pipes[J]. Integrated Intelligent Energy, 2023, 45(4): 47-51.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.04.007
Table 1
Pipeline parameters mm
管道规格 | 流域 直径 | 管壁 厚度 | 第1层保温层 厚度 | 第2层保温层 厚度 | 外套管 厚度 |
---|---|---|---|---|---|
DN400 | 426.0 | 9.0 | 60.0 | 60.0 | 9.0 |
DN350 | 377.0 | 9.0 | 75.0 | 75.0 | 9.0 |
DN300 | 325.0 | 8.0 | 85.0 | 85.0 | 9.0 |
DN250 | 273.0 | 6.5 | 100.0 | 100.0 | 9.0 |
DN200 | 219.0 | 6.0 | 90.0 | 90.0 | 9.0 |
DN150 | 159.0 | 4.5 | 45.0 | 45.0 | 8.0 |
DN100 | 108.0 | 4.0 | 55.0 | 55.0 | 8.0 |
DN50 | 89.0 | 4.0 | 50.0 | 50.0 | 7.0 |
Table 4
Outlet temperatures under different working conditions K
用户 | 出口温度 | ||
---|---|---|---|
工况1 | 工况2 | 工况3 | |
1 | 553.955 27 | 580.648 16 | 584.533 41 |
2 | 563.985 96 | 584.435 39 | 588.390 79 |
3 | 517.457 21 | 540.011 03 | 543.169 64 |
4 | 489.135 11 | 507.781 73 | 510.398 30 |
5 | 514.697 21 | 559.722 06 | 564.175 38 |
6 | 515.845 23 | 555.672 93 | 570.058 44 |
7 | 503.812 30 | 548.355 90 | 561.833 22 |
8 | 489.903 49 | 535.947 00 | 548.531 85 |
9 | 472.416 50 | 512.943 70 | 523.423 40 |
10 | 514.710 33 | 561.504 36 | 569.574 81 |
11 | 443.391 42 | 553.667 77 | 561.410 87 |
12 | 521.563 37 | 567.407 03 | 576.137 87 |
13 | 428.303 68 | 530.041 37 | 537.095 65 |
14 | 445.738 34 | 538.129 33 | 561.410 87 |
15 | 504.258 78 | 557.478 22 | 565.625 21 |
16 | 507.633 15 | 558.861 97 | 567.065 72 |
Table 5
Outlet pressures under different working conditions MPa
用户 | 出口压力 | ||
---|---|---|---|
工况1 | 工况2 | 工况3 | |
1 | 1.903 | 1.740 | 1.662 |
2 | 1.907 | 1.775 | 1.697 |
3 | 1.898 | 1.761 | 1.686 |
4 | 1.893 | 1.755 | 1.681 |
5 | 1.881 | 1769 | 1.648 |
6 | 1.862 | 1.723 | 1.518 |
7 | 1.862 | 1.722 | 1.519 |
8 | 1.856 | 1.705 | 1.502 |
9 | 1.830 | 1.662 | 1.473 |
10 | 1.876 | 1.736 | 1.578 |
11 | 1.875 | 1.703 | 1.545 |
12 | 1.876 | 1.733 | 1.575 |
13 | 1.869 | 1.672 | 1.515 |
14 | 1.870 | 1.692 | 1.545 |
15 | 1.864 | 1.677 | 1.520 |
16 | 1.863 | 1.677 | 1.520 |
[1] | 刘斯佳. 我国热电联产集中供热的发展趋势[C]// 2019 供热工程建设与高效运行研讨会论文集. 2019:904-906. |
[2] | 陈杰, 李以通, 张成昱, 等. 我国集中供热管网维护修复技术发展现状分析[J]. 节能, 2020, 39(2):115-118. |
CHEN Jie, LI Yitong, ZHANG Chengyu, et al. Discussion on maintenance and repair technology of central heating network in China[J]. Energy Conservation, 2020, 39(2):115-118. | |
[3] | 张汉贤, 钟巍, 蔡东平. 化工区长距离供热管道热损分析与研究[J]. 上海节能, 2020(11):1343-1347. |
ZHANG Hanxian, ZHONG Wei, CAI Dongping, et al. Analysis and research on heat loss of long distance heating pipeline in chemical industry district[J]. Shanghai Energy Conservation, 2020(11):1343-1347. | |
[4] | 高月芬, 王萌, 王城智. 聚氨酯直埋供热管道保温经济性研究[J]. 区域供热, 2020(4):93-96. |
GAO Yuefen, WANG Meng, WANG Chengzhi. Study on the economic performance of polyurethane insulation for directly buried heating pipeline[J]. District Heating, 2020(4):93-96. | |
[5] | 钟升楷, 顾景磊, 贺泽平, 等. 热力蒸汽管道保温性能恶化的影响机制研究[J]. 能源工程, 2020(1):78-83. |
ZHONG Shengkai, GU Jinglei, HE Zeping, et al. Study of the deterioration mechanisms of thermal insulation performance of steam pipe[J]. Energy Engineering, 2020(1):78-83. | |
[6] | 蔡俊华. 长距离蒸汽供热管道热瞬态特性研究[J]. 中国化工装备, 2019, 21(6):40-43. |
CAI Junhua. Study on thermal transient characteristics of long-distance steam heating pipeline[J]. China Chemical Industry Equipment, 2019, 21(6):40-43. | |
[7] | 刘鸿恺, 白莉, 郭禹歧. 水平直埋供热管道热损失影响因素敏感性分析[J]. 吉林建筑大学学报, 2020, 37(5):41-48. |
LIU Hongkai, BAI Li, GUO Yuqi. Sensitivity analysis on influencing factors of heat loss in horizontally and directly buried heating pipes[J]. Journal of Jilin Jianzhu University, 2020, 37(5):41-48. | |
[8] | 张锦鹏, 乔正凡, 张智斌. 直埋供热管道添加隔热板后土壤温度场的简化计算[J]. 区域供热, 2020(2):53-56. |
[9] | 李明巍, 王正, 王璐, 等. 多屏绝热辐射管道数值模拟分析[J]. 农业装备与车辆工程, 2019, 57(3):102-104,108. |
LI Mingwei, WANG Zheng, WANG Lu, et al. Numerical simulation analysis of multi-screen adiabatic radiation pipe[J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(3):102-104, 108. | |
[10] | 付治博, 王珍妮, 金立文, 等. 不同气候区架空供热管道保温层经济厚度的分析[J]. 暖通空调, 2018, 48(11):56-62. |
FU Zhibo, WANG Zhenni, JIN Liwen, et al. Economic insulation thickness analysis of elevated heating pipelines in different climatic zones[J]. Heating Ventilating & Air Conditioning, 2018, 48(11):56-62. | |
[11] |
XU Q, WANG K, ZOU Z, et al. A new type of two-supply, one-return, triple pipe-structured heat loss model based on a low temperature district heating system[J]. Energy, 2021, 218: 119569.
doi: 10.1016/j.energy.2020.119569 |
[12] |
ARABKOOHSAR A, ALSAGRI A S. A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems[J]. Energy, 2020, 193: 116781.
doi: 10.1016/j.energy.2019.116781 |
[13] | 任新生. 火电企业供热生产集中化、智能化的改造实践[J]. 华电技术, 2019, 41(11):70-75. |
REN Xinsheng. Practice of centralizing and intelligent transformation on heating supply of thermal power enterprises[J]. Huadian Technology, 2019, 41(11):70-75. | |
[14] | 方修睦, 杨大易, 周志刚, 等. 供热自动化、信息化及智慧化的差异探讨[J]. 华电技术, 2020, 42(11):34-38. |
FANG Xiumu, YANG Dayi, ZHOU Zhigang, et al. Discussion on automation,informatization and intellectualization of heating[J]. Huadian Technology, 2020, 42(11):34-38. | |
[15] | 栾天华. 某地区集中供热管网不同运行方式比较[J]. 华电技术, 2017, 39(7):15-19,77. |
LUN Tianhua. Comparison of different operating methods of centralized heat supply pipeline[J]. Huadian Technology, 2017, 39(7):15-19, 77. |
[1] | TONG Jialin, ZHANG Yan, LIU Wensheng, MAO Jianbo, YE Xuemin. Numerical simulation on co-combustion and alkali metal distribution in an opposed firing boiler mixed with sludge [J]. Integrated Intelligent Energy, 2024, 46(8): 50-58. |
[2] | SONG Jianjun, FU Kun, CHEN Meiqian. Simulation on the gas-solid flows and combustion in a multi-pass circulating fluidized bed based on computational particle fluid dynamics method [J]. Integrated Intelligent Energy, 2024, 46(8): 59-66. |
[3] | ZHANG Lidong, LI Pei, JIANG Tieliu, LI Qinwei, ZHANG Lei, XU Feng, MENG Xin. Numerical simulation on the wind blocking and speed increasing effect of trough solar arrays [J]. Integrated Intelligent Energy, 2024, 46(6): 1-7. |
[4] | WANG Yongxu, ZHOU Tianyu, DENG Genggeng, XU Gang, WANG Zhuo. Plant-level intelligent operation optimization for cogeneration units equipped with absorption heat pumps [J]. Integrated Intelligent Energy, 2024, 46(3): 20-28. |
[5] | YUAN Tianzhi, CHEN Ruiwen, Dilari YASHENG, XU Luoyun, HU Sideng. Research of parameter selection and accuracy optimization on event-driven simulation method of DC-DC converters [J]. Integrated Intelligent Energy, 2023, 45(3): 41-49. |
[6] | GE Leijiao, LI Jingjing, LI Peng, SU Hang. Optimized operation method for CHP integrated energy systems driven by power flow and exergy flow [J]. Integrated Intelligent Energy, 2023, 45(12): 1-9. |
[7] | YANG Zhengjun, LIANG Shixing, XU Gang, LIU Wenyi, WANG Ying, CUI Jianwei. Capacity optimization configuration of wind-solar complementary electricity-alcohol cogeneration system [J]. Integrated Intelligent Energy, 2023, 45(12): 71-78. |
[8] | WANG Kaiting, LI Xiaobin, ZHANG Hongna, LIU Shen, QU Kaiyang, LI Fengchen. Comprehensive evaluation for energy saving and emission reduction performance of turbulent drag reducing agent in heating systems [J]. Integrated Intelligent Energy, 2022, 44(9): 40-50. |
[9] | GUO Guangzheng, GOU Yujun, ZHONG Xiaohui. Simulation study on the effect of flow channel's different cross-section on PV/T system performance [J]. Integrated Intelligent Energy, 2022, 44(4): 76-84. |
[10] | WANG Ding, XIAO Hu, CHEN Yuxuan, YUE Song, ZHANG Yanping. Preheating analysis on molten salt storage tank based on CFD method [J]. Huadian Technology, 2021, 43(7): 75-81. |
[11] | ZHAO Dazhou, WANG Mingxiang, RUAN Huifeng, GU Jing, WANG Mingxiao. Simulation and optimization for Urea-SCR system of the natural gas internal combustion engine in a distributed energy station [J]. Huadian Technology, 2021, 43(5): 45-52. |
[12] | CHEN Bing, GUO Yongheng, LI Hongjiao, LIU Baiqian, ZHANG Ganyang, ZHAO Haibao. Configuration of electrode and plate in ESP and numerical simulation of particle migration in the electric field [J]. Huadian Technology, 2020, 42(9): 1-8. |
[13] | BAI Hao, ZHANG Jian, GUO Xinwei, LIU Yicheng, MA Qianhui, ZHANG Zhongxiao. Numerical simulation for synergistic control on denitration in the pulverized coal boiler with air staging and flue gas circulation [J]. Huadian Technology, 2020, 42(9): 9-15. |
[14] | LIN Yu. Numerical simulation of spraying effects and impacts on the desulphurization tower shell with two types of nozzles [J]. Huadian Technology, 2020, 42(9): 16-25. |
[15] |
WANG Yunpeng,DUAN Xiaoyun.
Retrofit and combustion adjustment of a lownitrogen burner in a 330MW cogeneration unit [J]. Huadian Technology, 2020, 42(6): 35-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||