Huadian Technology ›› 2021, Vol. 43 ›› Issue (7): 75-81.doi: 10.3969/j.issn.1674-1951.2021.07.012
• Thermal Energy Storage Material and Technology • Previous Articles
WANG Ding1(), XIAO Hu1, CHEN Yuxuan1, YUE Song2, ZHANG Yanping1,*(
)
Received:
2021-05-05
Revised:
2021-06-15
Published:
2021-07-25
Contact:
ZHANG Yanping
E-mail:741099174@qq.com;zyp2817@hust.edu.cn
CLC Number:
WANG Ding, XIAO Hu, CHEN Yuxuan, YUE Song, ZHANG Yanping. Preheating analysis on molten salt storage tank based on CFD method[J]. Huadian Technology, 2021, 43(7): 75-81.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.07.012
Tab.3
Actual and simulated average temperatures of the tank at each time point
预热时间/h | 实际罐体温度/℃ | 模拟罐体温度/℃ | 相对误差/% |
---|---|---|---|
25 | 76.56 | 89.32 | 16.67 |
50 | 111.63 | 132.59 | 18.78 |
75 | 156.44 | 172.12 | 10.02 |
100 | 183.75 | 206.73 | 12.51 |
125 | 223.31 | 239.57 | 7.28 |
150 | 258.35 | 273.94 | 6.03 |
175 | 269.04 | 297.48 | 10.57 |
200 | 312.43 | 323.94 | 3.68 |
Tab.6
Size of the tank
设计参数 | 50 MW, 6 h | 50 MW, 8 h | 50 MW,12 h | 100 MW,12 h |
---|---|---|---|---|
储罐内径/m | 23.22 | 25.00 | 29.04 | 36.38 |
储罐高度/m | 11.61 | 12.50 | 14.52 | 18.19 |
保温层厚度/mm | 500 | 500 | 500 | 500 |
钢板厚度1/mm | 30 | 30 | 46 | 72 |
钢板厚度2/mm | 26 | 26 | 40 | 64 |
钢板厚度3/mm | 20 | 20 | 34 | 56 |
钢板厚度4/mm | 16 | 16 | 28 | 48 |
钢板厚度5/mm | 12 | 12 | 22 | 42 |
钢板厚度6/mm | 12 | 12 | 16 | 34 |
钢板厚度7/mm | — | — | 12 | 26 |
钢板厚度8/mm | — | — | 12 | 18 |
钢板厚度9/mm | — | — | — | 12 |
钢板厚度10/mm | — | — | — | 12 |
钢板宽度/mm | 1 980 | 1 980 | 1 980 | 1 980 |
钢材总质量/t | 198 | 225 | 393 | 829 |
[1] | 高肖肖. 熔盐储罐的结构设计与性能研究[D]. 西安:西北大学, 2018. |
[2] | PELAY U, LUO L, FAN Y, et al. Thermal energy storage systems for concentrated solar power plants[J]. Renewable & Sustainable Energy Reviews, 2017, 79:82-100. |
[3] | 岳松, 李明. 光热发电储能技术及系统分析[J]. 应用能源技术, 2019 (7):54-56. |
YUE Song, LI Ming. Solar thermal power energy storage technology and system analysis[J]. Applied Energy Technology. 2019 (7):54-56. | |
[4] | 导致新月沙丘光热电站熔盐泄漏事故的七个原因分析[EB/OL]. ( 2016-12-06)[2021-05-02]. http://www.cspplaza.com/article-8519-1.html. |
[5] | SCHULTE-FISCHEDICK J, TAMME R, HERRMANN U. CFD analysis of the cool down behaviour of molten salt thermal storage systems[C]// ASME 2008 2nd International Conference on Energy Sustainability Collocated with the Heat Transfer. Jacksonville,USA:ASME, 2008. |
[6] |
ZAVERSKY F, GARCÍA-BARBERENA J, SANCHEZ M, et al. Transient molten salt two-tank thermal storage modeling for CSP performance simulations[J]. Solar Energy, 2013, 93:294-311.
doi: 10.1016/j.solener.2013.02.034 |
[7] | 顾清之, 张艳梅, 关弘扬, 等. 熔盐储罐冷却过程的瞬态分析[J]. 储能科学与技术, 2017, 6(4):782-788. |
GU Qingzhi, ZHANG Yanmei, GUAN Hongyang, et al. Transient analyses of a molten salt heat storage tanks[J]. Energy Storage Science and Technology, 2017, 6(4):782-788. | |
[8] | 崔凯平, 韩伟, 倪煜, 等. 熔盐储罐热分层混温过程研究[J]. 华电技术, 2020, 42(5):8-13. |
CUI Kaiping, HAN Wei, NI Yu, et al. Research on the thermal stratification and temperature mixing process of molten salt storage tanks[J]. Huadian Technology, 2020, 42(5):8-13. | |
[9] | BRADSHAW R W, DAWSON D B, ROSA W, et al. Final test and evaluation results from the solar two project[J]. Energy Storage, 2002. |
[10] |
ZHANG X, WU Y, MA C, et al. Experimental study on temperature distribution and heat losses of a molten salt heat storage tank[J]. Energies, 2019, 12(10):1-14.
doi: 10.3390/en12010001 |
[11] | 时华, 方文峰, 朱义凡, 等. 熔盐储罐预热过程的实验和模拟研究[J]. 中国电机工程学报, 2020, 40(18):5972-5979. |
SHI Hua, FANG Wenfeng, ZHU Yifan, et al. Experimental and simulation study on preheating process of molten salt storage tank[J]. Proceedings of the CSEE. 2020, 40(18):5972-5979. | |
[12] | 韩伟, 崔凯平, 赵晓辉, 等. 光热电站储热系统设计及储罐预热方案研究[J]. 华电技术, 2020, 42(4):42-46. |
HAN Wei, CUI Kaiping, ZHAO Xiaohui, et al. Energy storage system design for the CSP plants and tank preheating strategy research[J]. Huadian Technology, 2020, 42(4):42-46. | |
[13] | 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001. |
[14] |
ZOU C . Geometric optimization model for the solar cavity receiver with helical pipe at different solar radiation[J]. Frontiers in Energy, 2019, 13(2):1-12.
doi: 10.1007/s11708-017-0458-6 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | TONG Jialin, ZHANG Yan, LIU Wensheng, MAO Jianbo, YE Xuemin. Numerical simulation on co-combustion and alkali metal distribution in an opposed firing boiler mixed with sludge [J]. Integrated Intelligent Energy, 2024, 46(8): 50-58. |
[3] | SONG Jianjun, FU Kun, CHEN Meiqian. Simulation on the gas-solid flows and combustion in a multi-pass circulating fluidized bed based on computational particle fluid dynamics method [J]. Integrated Intelligent Energy, 2024, 46(8): 59-66. |
[4] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
[5] | ZHANG Lidong, LI Pei, JIANG Tieliu, LI Qinwei, ZHANG Lei, XU Feng, MENG Xin. Numerical simulation on the wind blocking and speed increasing effect of trough solar arrays [J]. Integrated Intelligent Energy, 2024, 46(6): 1-7. |
[6] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[7] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[8] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[9] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[10] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[11] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[12] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[13] | LI Yimin, DONG Haiying, DING Kun, WANG Jinyan. Multi-stage optimal allocation of energy storage considering long-term load probability prediction [J]. Integrated Intelligent Energy, 2024, 46(2): 19-27. |
[14] | SUN Na, DONG Haiying, CHEN Wei, MA Hulin. Secondary frequency modulation control strategy for large-scale grid-side energy storage devices in new power systems [J]. Integrated Intelligent Energy, 2024, 46(2): 59-67. |
[15] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||