Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (10): 48-55.doi: 10.3969/j.issn.2097-0706.2024.10.007
• Power Grid and AI • Previous Articles Next Articles
ZHANG Kao1(), HE Kailin2(
), YANG Peihao3,4,*(
)
Received:
2024-03-25
Revised:
2024-06-07
Accepted:
2024-10-25
Published:
2024-10-25
Contact:
YANG Peihao
E-mail:adrianoyy@126.com;xagrjuy@126.com;yangpeihao@tpri.com.cn
Supported by:
CLC Number:
ZHANG Kao, HE Kailin, YANG Peihao. Research on power transformer fault diagnosis algorithm based on fuzzy reinforcement learning[J]. Integrated Intelligent Energy, 2024, 46(10): 48-55.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.10.007
Table 2
Sources for data sets of different fault types
数据 | 不同故障类型样本数量 | ||||||||
---|---|---|---|---|---|---|---|---|---|
正常工况 | 低温热故障 (≤300 ℃) | 中温热故障(300~700 ℃) | 高温热故障(>700 ℃) | 局部放电 | 低能放电 | 高能放电 | 数据量 | ||
来自文献[13]的数据集 | 1 | 16 | 18 | 9 | 26 | 48 | 117 | ||
2 | 1 | 2 | 2 | 1 | 6 | ||||
3 | 9 | 38 | 11 | 17 | 75 | ||||
3 | 2 | 1 | 1 | 4 | |||||
4 | 2 | 2 | 4 | ||||||
5 | 4 | 2 | 1 | 2 | 1 | 10 | |||
6 | 6 | 2 | 9 | 17 | |||||
7 | 2 | 3 | 4 | 9 | |||||
来自试验模拟的样本 | 16 | 15 | 48 | 61 | 23 | 91 | 106 | 360 | |
总计 | 31 | 83 | 49 | 85 | 39 | 130 | 184 | 552 |
Table 6
Rule intensity vector
故障类型 | ||||||
---|---|---|---|---|---|---|
正常工况 | 0.644 5 | 0.173 0 | 0.000 0 | 0.000 0 | 0.000 0 | 0.182 4 |
局部放电 | 0.119 3 | 0.744 4 | 0.000 1 | 0.000 0 | 0.000 1 | 0.136 1 |
低能放电 | 0.093 1 | 0.000 0 | 0.744 5 | 0.000 0 | 0.000 2 | 0.162 3 |
高能放电 | 0.036 2 | 0.000 0 | 0.000 0 | 0.719 2 | 0.000 3 | 0.244 3 |
低温热故障 | 0.103 5 | 0.000 0 | 0.000 0 | 0.000 1 | 0.744 5 | 0.151 9 |
高温热故障 | 0.118 4 | 0.000 2 | 0.000 0 | 0.144 4 | 0.000 0 | 0.737 0 |
[1] | 黄艺璇, 杨世海, 曹晓冬, 等. 基于分段电流特征和随机森林算法的低压配电网拓扑识别方法[J]. 电力需求侧管理, 2023, 25(2):63-69. |
HUANG Yixuan, YANG Shihai, CAO Xiaodong, et al. Topology identification method of low voltage distribution network based on segmented current characteristics and random forest algorithm[J]. Power Demand Side Management, 2023, 25(2): 63-69. | |
[2] | 刘钧迪, 韦德福, 王飞鸣, 等. 油浸式配电变压器入网检测可拓综合评价[J]. 东北电力技术, 2023, 44(7):34-39. |
LIU Jundi, WEI Defu, WANG Feiming, et al. Comprehensive evaluation of oil immersed distribution transformer network access detection extenics[J]. Northeast Electric Power Technology, 2023, 44(7):34-39. | |
[3] | 谭珊, 赵仲勇, 杨建, 等. 基于动态时间规整的变压器绕组变形故障诊断方法研究[J]. 高压电器, 2024, 60(2):108-118. |
TAN Shan, ZHAO Zhongyong, YANG Jian, et al. Research on diagnosis method of transformer winding deformation fault based on dynamic time warping[J]. High Voltage Electrical Appliances, 2024, 60(2):108-118. | |
[4] | 朱亮亮, 滕姗姗, 徐辰冠, 等. 基于自编码多层感知器的电力负荷管理终端运行故障诊断方法[J]. 电力需求侧管理, 2024, 26(2):113-118. |
ZHU Liangliang, TENG Shanshan, XU Chenguan, et al. Operating fault diagnosis method for power load management terminals based on auto-encoder multilayer perception[J]. Power Demand Side Management, 2024, 26 (2): 113-118. | |
[5] | 潘志城, 周海滨, 邓军, 等. 一起500 kV油浸纸绝缘套管油色谱数据异常原因分析[J]. 变压器, 2020(6):67-72. |
PAN Zhicheng, ZHOU Haibin, DENG Jun, et al. Analysis of abnormal oil chromatography of 500 kV oil immersed paper insulation bushing[J]. Transformer, 2020(6): 67-72. | |
[6] | 沈琪, 倪钱杭, 章岸, 等. 变压器油色谱在线监测在缺陷发现中的案例分析[J]. 变压器, 2024, 61(3):72-75. |
SHEN Qi, NI Qianhang, ZHANG An, et al. Case analysis of transformer oil chromatography online monitoring in defect detection[J]. Transformer, 2024, 61 (3): 72-75. | |
[7] | 龙玉江, 姜超颖, 钟掖, 等. 极端气象条件下基于深度学习网络特征的变压器故障预测[J]. 现代电子技术, 2024, 47(4):91-96. |
LONG Yujiang, JIANG Chaoying, ZHONG Ye, et al. Transformer fault prediction based on deep learning network features under extreme weather conditions[J]. Modern Electronic Technology, 2024, 47 (4): 91-96. | |
[8] | 王科, 苟家萁, 彭晶, 等. 基于LSTM网络的变压器油中溶解气体浓度预测[J]. 电子测量技术, 2020, 43(4):81-87. |
WANG Ke, GOU Jiaqi, PENG Jing, et al. Prediction of dissolved gas concentration in transformer oil based on LSTM network[J]. Electronic Measurement Technology, 20020, 43(4):81-87. | |
[9] | XIAO Y, PAN W G, GUO X M, et al. Fault diagnosis of traction transformer based on Bayesian network[J]. Energies, 2020, 13(18):4966. |
[10] | ZHAI S L, CHEN X W, WEI L, et al. Research on identification methods of gas content in transformer insulation oil based on deep transfer network[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(18):15764-15772. |
[11] | 刘云鹏, 许自强, 董王英, 等. 基于经验模态分解和长短期记忆神经网络的变压器油中溶解气体浓度预测方法[J]. 中国电机工程学报, 2019, 39(13):3998-4008. |
LIU Yunpeng, XU Ziqiang, DONG Wangying, et al. Prediction method of dissolved gas concentration in transformer oil based on empirical mode decomposition and long short-term memory neural network[J]. Proceedings of the CSEE 2019, 39 (13): 3998-4008. | |
[12] | 陈浈斐, 章黄勇, 马宏忠, 等. 基于深度学习的电力设备故障诊断方法研究综述[J]. 电气自动化, 2022, 44(1):1-2,6. |
CHEN Zhenfei, ZHANG Huangyong, MA Hongzhong, et al. A review of deep learning based fault diagnosis methods for power equipment[J]. Electrical Automation, 2022, 44 (1): 1-2,6. | |
[13] | 王鑫明, 付永波, 李俊涛. 基于决策树算法的电力设备故障诊断辅助决策方法[J]. 自动化应用, 2023, 64(12):128-131. |
WANG Xinming, FU Yongbo, LI Juntao. Auxiliary decision method for power equipment fault diagnosis based on decision tree algorithm[J]. Automation Application, 2023, 64 (12): 128-131. | |
[14] |
肖宏磊, 留毅, 夏红军, 等. 基于PCA与SSA-LightGBM的油浸式变压器故障诊断方法[J]. 综合智慧能源, 2023, 45(3): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.03.002 |
XIAO Honglei, LIU Yi, XIA Hongjun, et al. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM[J]. Integrated Intelligent Energy, 2023, 45(3): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.03.002 |
|
[15] | IEEE. Guide for the interpretation of gases generated in oil-immersed transformers:IEEE Std C57.104—1991[S]. |
[16] |
熊真真. 基于决策树的上海商业建筑虚拟电厂执行力分析[J]. 综合智慧能源, 2023, 45(6): 66-72.
doi: 10.3969/j.issn.2097-0706.2023.06.009 |
XIONG Zhenzhen. Analysis on execution of VPPs for commercial buildings in Shanghai based on decision tree[J]. Integrated Intelligent Energy, 2023, 45(6): 66-72.
doi: 10.3969/j.issn.2097-0706.2023.06.009 |
[1] | FENG Ji, YANG Guohua, SHI Lei, PAN Huan, LU Yuxiang, ZHANG Yuanxi, LI Zhen. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network [J]. Integrated Intelligent Energy, 2024, 46(6): 8-15. |
[2] | CHEN Yang, WENG Weijie, HUANG Jiangdong, ZOU Tao, JIANG Wei. Research on multi-path balancing topology based on transformers [J]. Integrated Intelligent Energy, 2024, 46(4): 68-77. |
[3] | REN Yiming, DU Dongsheng, DENG Xiangshuai, LIAN He, ZHAO Zhemin. Power line fault diagnosis based on GRU and GWO-KELM [J]. Integrated Intelligent Energy, 2024, 46(3): 54-62. |
[4] | WANG Lizhong, CHI Jianfei, DING Yeqiang, YAO Haiyan, TANG Zhipeng, WU Tongyu. Transformer fault diagnosis method based on NNTR-SMOTE and GA-XGBoost [J]. Integrated Intelligent Energy, 2024, 46(1): 84-93. |
[5] | XIAO Honglei, LIU Yi, XIA Hongjun, MIAO Yufeng, YU Xiaoling, YANG Haiqi. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM [J]. Integrated Intelligent Energy, 2023, 45(3): 9-16. |
[6] | YANG Xiaoyan, XIE Mancheng, GUO Xiaoxuan, ZHAO Yan, CHEN Chongmin, CHEN Zimin, LIAO Zhuoying. PV system fault diagnosis based on random forest classifier optimized by improved atomic orbital search algorithm [J]. Integrated Intelligent Energy, 2023, 45(10): 53-60. |
[7] | YIN Yuchen, LIU Yuhang, MA Yuanqian, LEI Yi. Integrated energy demand forecasting for the park based on the Transformer algorithm [J]. Integrated Intelligent Energy, 2023, 45(10): 61-69. |
[8] | LONG Sicheng, HUANG Zhihong. Research on fault diagnosis method of power transformers based on multi-scale extreme fusion network [J]. Integrated Intelligent Energy, 2022, 44(9): 78-83. |
[9] | JIA Zhijun, BAI Delong, SONG Yanjie, WANG Jianfei, LI Chunxin. Research on on-line fault diagnosis and treatment of power plant equipment based on KPCA [J]. Huadian Technology, 2021, 43(8): 48-53. |
[10] | WEI Jiadong, XU Fei, CAO Hui, MIAO Zhongjie, YE Changhui, ZHOU Niancheng. Intelligent perception platform for distribution transformers and its safety architecture based on IoT [J]. Huadian Technology, 2021, 43(1): 1-5. |
[11] |
WU Luming,XUE Mingjun,CHEN Qi,WANG Yongxu,TANG Zhiguo,CHEN Hongyan1,2.
一起电子互感器异常引发的复杂发展性故障分析及改进 |
[12] | HU Jie,TANG Jing,XIE Shiyi,WANG Yun. State assessment and early warning application for power plant equipment based on big data technology [J]. Huadian Technology, 2020, 42(2): 1-6. |
[13] | CHEN Qing, GUO Peiyu, ZHOU Qing, WU Lihua. Key points to equipment selection for a centralized photovoltaic power station [J]. Huadian Technology, 2020, 42(12): 78-81. |
[14] | HUANG Shaowei. Application of ACMD in fault diagnosis for bearings [J]. Huadian Technology, 2020, 42(1): 54-57. |
[15] |
ZHANG Wei1a,ZHOU Guopeng1b,WANG Yang1a,NI Hao1a,ZHONG Zhuhui2.
Analysis of an abnormal alarm of TV for a 220kV main transformer protection
[J]. Huadian Technology, 2019, 41(6): 23-26.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||