Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (1): 18-25.doi: 10.3969/j.issn.2097-0706.2025.01.003
• New Power System Scheduling based on AI • Previous Articles Next Articles
ZHANG Huaqin1,2(), LIU Wei3,*(
), WANG Hui1,2, LI Leixiao1,2, Sharengaowa4
Received:
2024-10-08
Revised:
2024-11-13
Published:
2025-01-25
Contact:
LIU Wei
E-mail:20221800730@imut.edu.cn;723674266@qq.com
Supported by:
CLC Number:
ZHANG Huaqin, LIU Wei, WANG Hui, LI Leixiao, Sharengaowa. Multivariable integrated power control optimization of wind farms based on deep reinforcement learning[J]. Integrated Intelligent Energy, 2025, 47(1): 18-25.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.01.003
[1] | 朱博, 吴水军, 黄柯昊, 等. 水风光互补系统一次调频方案研究[J]. 太阳能学报, 2024, 45(5):412-421. |
ZHU Bo, WU Shuijun, HUANG Kehao, et al. Research on primary frequency regulation scheme of water-wind-solar complementary system[J]. Acta Energiae Solaris Sinica, 2024, 45(5):412-421. | |
[2] | 瞿国华. 我国能源转型与过渡能源的合理选择[J]. 科学发展, 2022(12):88-96. |
QU Guohua. China's rational choice of energy transition and transition energy[J]. Scientific Development, 2022(12):88-96. | |
[3] | KUMAR D, CHATTERJEE K. A review of conventional and advanced MPPT algorithms for wind energy systems[J]. Renewable and Sustainable Energy Reviews, 2016, 55:957-970. |
[4] | 宋冬然, 沈旭涛, 黄朝能, 等. 基于代理模型辅助改进标准粒子群算法的浮式风电场功率优化[J]. 中国电机工程学报, 2023, 43(S1):217-228. |
SONG Dongran, SHEN Xutao, HUANG Chaoneng, et al. Power optimization of floating wind farm based on improved standard particle swarm optimization assisted by proxy model[J]. Proceedings of the CSEE, 2023, 43(S1):217-228. | |
[5] | NASH R, NOURI R, VASEL A. Wind turbine wake control strategies:A review and concept proposal[J]. Energy Conversion and Management, 2021, 245:114581. |
[6] | CAO L Y, WEI W, ZHANG J W, et al. Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty[J]. Applied Energy, 2023, 351:121849. |
[7] |
李雄威, 徐家豪, 朱润泽, 等. 基于偏航尾流模型的风电场功率协同优化研究[J]. 太阳能学报, 2022, 43(10):144-151.
doi: 10.19912/j.0254-0096.tynxb.2021-1292 |
LI Xiongwei, XU Jiahao, ZHU Runze, et al. Study on power collaborative optimization of wind farm based on yaw wake model[J]. Acta Energiae Solaris Sinica, 2022, 43(10):144-151.
doi: 10.19912/j.0254-0096.tynxb.2021-1292 |
|
[8] | SUN X X, LI Y M, ZHANG F, et al. Decentralized yaw optimization for maximizing wind farm production based on deep reinforcement learning[J]. Energy Conversion and Management, 2023, 286:1-11. |
[9] | LIU Y, ZHANG J H, ZHOU J H. The influence of tilt angle on the aerodynamic performance of a wind turbine[J]. Applied Sciences, 2020, 10(15):5380. |
[10] | XU X H, LIU D F, LI Y, et al. Collective large-scale wind farm multivariate power output control based on hierarchical communication multi-agent proximal policy optimization[J]. Renewable Energy, 2023, 219:119479. |
[11] | SUTTON R S, BARTO A G. Reinforcement learning:An introduction[M]. MIT Press, 2018. |
[12] | LI Y. Deep reinforcement learning:An overview[Z]. 2017. |
[13] |
王康平, 张兴科, 刘财华, 等. 基于自适应下垂控制的风电场无功电压控制策略[J]. 综合智慧能源, 2022, 44(4):12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002 |
WANG Kangping, ZHANG Xingke, LIU Caihua, et al. Reactive power and voltage control strategy based on adaptive droop control for wind power plants[J]. Integrated Intelligent Energy, 2022, 44(4):12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002 |
|
[14] | 刘玉山, 胡阔海, 王灵梅, 等. 考虑尾流效应的风电场输出功率优化[J]. 可再生能源, 2023, 41(10):1336-1342. |
LIU Yushan, HU Kuohai, WANG Lingmei, et al. Optimization of wind farm output power considering wake effect[J]. Renewable Energy Resources, 2023, 41(10):1336-1342. | |
[15] | PADULLAPARTHI V R, NAGARATHINAM S, VASAN A, et al. Falcon-farm Level control for wind turbines using multi-agent deep reinforcement learning[J]. Renewable Energy, 2022, 181:445-456. |
[16] | HAI B V, THANH N T, MAN K H. Distributed operation of wind farm for maximizing output power:A multi-agent deep reinforcement learning approach[J]. IEEE ACCESS, 2020, 8:173136-173146. |
[17] | CHEN Y, MEI T, LIU W X, et al. Wind farm power generation control via double-network-based deep reinforcement learning[J]. IEEE Transactions on Industrial Informatics, 2021, 18(4):2321-2330. |
[18] | JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5 MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab, 2009. |
[19] | BASTANKHAH M, PORTÉ-AGEL F. Experimental and theoretical study of wind turbine wakes in yawed conditions[J]. Journal of Fluid Mechanics, 2016, 806:506-541. |
[20] | QIAN G W, ISHIHARA T. Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity[J]. Energy, 2021, 220:119680. |
[21] |
崔双双, 孙单勋. 分工况下风电机组各变量相关性研究[J]. 综合智慧能源, 2022, 44(12):49-55.
doi: 10.3969/j.issn.2097-0706.2022.12.007 |
CUI Shuangshuang, SUN Shanxun. Study on the correlation of wind turbine variables under different conditions[J]. Integrated Intelligent Energy, 2022, 44(12):49-55.
doi: 10.3969/j.issn.2097-0706.2022.12.007 |
|
[22] | 袁孝科, 沈石兰, 张茂松, 等. 基于可解释强化学习的智能虚拟电厂最优调度[J/OL]. 综合智慧能源,1-9(2024-09-29)[2024-10-06]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240927.1628.002.html. |
YUAN Xiaoke, SHEN Shilan, ZHANG Maosong, et al. Optimal scheduling of intelligent virtual power plants based on explainable reinforcement learning[J/OL]. Integrated Intelligent Energy,1-9(2024-09-29)[2024-10-06]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240927.1628.002.html. | |
[23] | Ministry of economic affairs netherlands enterprise agency and climate policy[Z]. Hollandse Kust Noord (Site b) Dataset, 2019. https://offshorewind.rvo.nl/file/view/55040229/Processed+data+HKNB. |
[24] | NEUSTROEV G, Andringa S P E, VERZIJLBERGH R A, et al. Deep reinforcement learning for active wake control[C]// Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems. 2022: 944-953. |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | TONG Jialin, ZHANG Yan, LIU Wensheng, MAO Jianbo, YE Xuemin. Numerical simulation on co-combustion and alkali metal distribution in an opposed firing boiler mixed with sludge [J]. Integrated Intelligent Energy, 2024, 46(8): 50-58. |
[3] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[4] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[5] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[6] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[7] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[8] | DING Leyan, KE Song, YANG Jun, SHI Xingye. Control strategy of virtual synchronous generators based on adaptive control parameter setting [J]. Integrated Intelligent Energy, 2024, 46(3): 35-44. |
[9] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[10] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[11] | ZHANG Xinyi, YANG Bo. Stability analysis on islanded microgrids with grid-forming and grid-following converters [J]. Integrated Intelligent Energy, 2024, 46(2): 12-18. |
[12] | SUN Na, DONG Haiying, CHEN Wei, MA Hulin. Secondary frequency modulation control strategy for large-scale grid-side energy storage devices in new power systems [J]. Integrated Intelligent Energy, 2024, 46(2): 59-67. |
[13] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[14] | YIN Linfei, ZHAO Yiran. Stability control of multiband power system stabilizer based on Transformer-embedded deep deterministic policy gradient method [J]. Integrated Intelligent Energy, 2024, 46(12): 1-9. |
[15] | XIAO Bitao, LIU Yu, LAI Xiaolu. Wind turbine blades icing monitoring based on dynamic latent variable regression [J]. Integrated Intelligent Energy, 2024, 46(12): 29-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||