Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (12): 1-9.doi: 10.3969/j.issn.2097-0706.2024.12.001
• Decision of control and safety • Next Articles
Received:
2024-07-29
Revised:
2024-09-04
Published:
2024-10-29
Supported by:
CLC Number:
YIN Linfei, ZHAO Yiran. Stability control of multiband power system stabilizer based on Transformer-embedded deep deterministic policy gradient method[J]. Integrated Intelligent Energy, 2024, 46(12): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.12.001
Table 1
Parameters of seven algorithms
算法 | 参数 |
---|---|
PID | KP=50,KI=-3.834 20,KD=0.104 32,KN=100 |
PPO | α=0.008,β=0.5,γ=0.95,Action={30,200,-10,10,0,10} |
SAC | α=0.001,β=0.5,γ=0.99,Action={0,100,-10,1,-1,1} |
TD3 | α=0.001,β=0.5,γ=0.99,Action={-100,100,-5,5,-10,10} |
DDPG | α=0.001,β=0.3,γ=1.00,Action={40,200,-1,1,0,10} |
TDDPG | α=0.001,β=0.5,γ=0.99,Action={30,200,-10,10,-10,10} |
LMS | ω=1,φ=0.01 |
Table 2
Performance metrics of different algorithms under three-phase grounding fault
算法 | IAE/V | ITAE /V | ISE/V2 | ITSE/V2 |
---|---|---|---|---|
TDDPG | 0.649 8 | 5.895 | 0.041 36 | 0.246 7 |
DDPG | 0.879 7 | 7.193 | 0.045 79 | 0.469 1 |
PID | 0.802 9 | 6.336 | 0.046 30 | 0.290 5 |
SAC | 1.153 0 | 11.650 | 0.080 13 | 0.715 9 |
TD3 | ∞ | ∞ | ∞ | ∞ |
PPO | ∞ | ∞ | ∞ | ∞ |
LMS | 0.954 1 | 9.023 | 0.056 59 | 0.493 3 |
Table 3
Performance metrics of different algorithms under two-phase grounding fault
算法 | IAE /V | ITAE /V | ISE/V2 | ITSE/V2 |
---|---|---|---|---|
TDDPG | 0.614 7 | 6.334 | 0.043 40 | 0.366 7 |
DDPG | 0.839 7 | 7.593 | 0.045 60 | 0.405 3 |
PID | 0.850 8 | 7.991 | 0.044 30 | 0.443 3 |
SAC | 1.122 0 | 10.900 | 0.071 34 | 0.617 2 |
TD3 | ∞ | ∞ | ∞ | ∞ |
PPO | ∞ | ∞ | ∞ | ∞ |
LMS | 0.903 1 | 8.433 | 0.051 59 | 0.378 0 |
[1] | 伏云辉. 全球150余国提出碳中和目标[J]. 生态经济, 2024, 40(3): 1-4. |
[2] |
滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63.
doi: 10.3969/j.issn.2097-0706.2023.08.007 |
TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality[J]. Integrated Intelligent Energy, 2023, 45(8): 53-63.
doi: 10.3969/j.issn.2097-0706.2023.08.007 |
|
[3] | 于永. 新能源电力系统中的储能技术探讨[J]. 智慧中国, 2022(11): 80-81. |
[4] | 江崇熙, 石鹏, 黄伟, 等. 考虑多振荡模式的多频段电力系统稳定器参数整定方法[J]. 电力系统自动化, 2020, 44(4): 142-149. |
JIANG Chongxi, SHI Peng, HUANG Wei, et al. Parameter setting method for multi-band power system stabilizer considering multiple oscillation modes[J]. Automation of Electric Power Systems, 2020, 44(4): 142-149. | |
[5] |
李朋真, 贾冰珂, 刘艳红, 等. 燃烧后二氧化碳捕集系统的改进自抗扰控制[J]. 综合智慧能源, 2023, 45(8): 18-25.
doi: 10.3969/j.issn.2097-0706.2023.08.003 |
LI Pengzhen, JIA Bingke, LIU Yanhong, et al. Modified active disturbance rejection control on the post-combustion CO2 capture system[J]. Integrated Intelligent Energy, 2023, 45(8): 18-25.
doi: 10.3969/j.issn.2097-0706.2023.08.003 |
|
[6] | CHANG Jinwei, LI Zhi, HUANG Yan, et al. Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm[J]. Energy, 2022,239: 122487. |
[7] |
李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34.
doi: 10.3969/j.issn.2097-0706.2024.06.004 |
LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning[J]. Integrated Intelligent Energy, 2024, 46(6): 27-34.
doi: 10.3969/j.issn.2097-0706.2024.06.004 |
|
[8] |
胡泽, 朱子晴, 卜思齐, 等. 基于深度强化学习的区域综合能源定价策略研究[J]. 综合智慧能源, 2023, 45(7): 87-96.
doi: 10.3969/j.issn.2097-0706.2023.07.010 |
HU Ze, ZHU Ziqing, BU Siqi, et al. Pricing strategy in district-level integrated energy market based on deep reinforcement learning[J]. Integrated Intelligent Energy, 2023, 45(7): 87-96.
doi: 10.3969/j.issn.2097-0706.2023.07.010 |
|
[9] | 袁雪峰, 马进, 强硕, 等. 遗传算法优化锅炉汽包水位不完全微分PID参数[J]. 华电技术, 2018, 40(10): 7-11. |
YUAN Xuefeng, MA Jin, QIANG Shuo, et al. Incomplete differential PID parameters of boiler drum water level optimized by genetic algorithm[J]. Huadian Technology, 2018, 40(10): 7-11. | |
[10] | 康岩松, 臧顺来. 基于多种策略的改进粒子群优化算法[J]. 东北大学学报(自然科学版), 2023, 44(8): 1089-1097. |
KANG Yansong, ZANG Shunlai. Improved particle swarm optimization algorithm based on multiple strategies[J]. Journal of Northeastern University (Natural Science), 2023, 44(8): 1089-1097. | |
[11] |
刘子祺, 苏婷婷, 何佳阳, 等. 基于多目标粒子群算法的配电网储能优化配置研究[J]. 综合智慧能源, 2023, 45(6): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.06.002 |
LIU Ziqi, SU Tingting, HE Jiayang, et al. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm[J]. Integrated Intelligent Energy, 2023, 45(6): 9-16.
doi: 10.3969/j.issn.2097-0706.2023.06.002 |
|
[12] |
冯伟杨, 林思雨, 冯婧涛, 等. 基于Q学习的蜂窝车联网边缘计算系统PC-5/Uu接口联合卸载策略[J]. 电子学报, 2024, 52(2): 385-395.
doi: 10.12263/DZXB.20220922 |
FENG Weiyang, LIN Siyu, FENG Jingtao, et al. Q-learning based joint PC-5/Uu offloading strategy for C-V2X based vehicular edge computing system[J]. Acta Electronica Sinica, 2024, 52(2): 385-395.
doi: 10.12263/DZXB.20220922 |
|
[13] |
郑庆明, 井延伟, 梁涛, 等. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43.
doi: 10.3969/j.issn.2097-0706.2024.06.005 |
ZHENG Qingming, JING Yanwei, LIANG Tao, et al. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm[J]. Integrated Intelligent Energy, 2024, 46(6): 35-43.
doi: 10.3969/j.issn.2097-0706.2024.06.005 |
|
[14] | 范培潇, 柯松, 杨军, 等. 基于改进多智能体深度确定性策略梯度的多微网负荷频率协同控制策略[J]. 电网技术, 2022, 46(9): 3504-3515. |
FAN Peixiao, KE Song, YANG Jun, et al. Load frequency coordinated control strategy of multi-microgrid based on improved MA-DDPG[J]. Power System Technology, 2022, 46(9): 3504-3515. | |
[15] | 展明星, 王致诚, 李致远. 基于模糊自适应PID和BP神经网络PID控制的永磁同步电机控制效果比较研究[J]. 广西电力, 2022, 45(1): 26-32. |
ZHAN Mingxing, WANG Zhicheng, LI Zhiyuan. Comparative study on the control effect of permanent magnet synchronous motors based on fuzzy adaptive PID and BP neural network PID control[J]. Guangxi Electric Power, 2022, 45(1): 26-32. | |
[16] | 焦建利. ChatGPT助推学校教育数字化转型: 人工智能时代学什么与怎么教[J]. 中国远程教育, 2023(4): 16-23. |
JIAO Jianli. ChatGPT boosting digital transformation of education in schooling: What to learn and how to teach in the era of artificial intelligence[J]. Chinese Journal of Distance Education, 2023(4): 16-23. | |
[17] | TIAN D, LI M C, REN Q B, ZHANG X J, et al. Intelligent question answering method for construction safety hazard knowledge based on deep semantic mining[J]. Automation in Construction, 2023,145: 104670. |
[18] | YAN Z M, XU Y. Real-time optimal power flow with linguistic stipulations: Integrating GPT-agent and deep reinforcement learning[J]. IEEE Transactions on Power Systems, 2024, 39(2): 4747-4759. |
[19] | HAMED R N, ABOLFAZL Z, HOLGER V. Actor-critic learning based PID control for robotic manipulators[J]. Applied Soft Computing, 2024,151: 111153. |
[20] | JIANG H Y, LU Y Y, ZHANG D N, et al. Deep learning-based fusion networks with high-order attention mechanism for 3D object detection in autonomous driving scenarios[J]. Applied Soft Computing, 2024,152:111253. |
[21] | BARHAGHTALAB M H, SEPESTANAKI M A, MOBAYEN S, et al. Design of an adaptive fuzzy-neural inference system-based control approach for robotic manipulators[J]. Applied Soft Computing, 2023,149: 110970. |
[22] | ZHANG G Z, HU W H, ZHAO J B, et al. A novel deep reinforcement learning enabled multi-band PSS for multi-mode oscillation control[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3794-3797. |
[23] | 王丽萍, 任宇, 邱启仓, 等. 多目标进化算法性能评价指标研究综述[J]. 计算机学报, 2021, 44(8): 1590-1619. |
WANG Liping, REN Yu, QIU Qicang, et al. Survey on performance indicators for multi-objective evolutionary algorithms[J]. Chinese Journal of Computers, 2021, 44(8): 1590-1619. | |
[24] | ZHANG X S, GUO Z X, PAN F, et al. Dynamic carbon emission factor based interactive control of distribution network by a generalized regression neural network assisted optimization[J]. Energy, 2023, 283: 129132. |
[25] | ASHRAFUL H, SAIFUR R. Short-term electrical load forecasting through heuristic configuration of regularized deep neural network[J]. Applied Soft Computing Journal, 2022, 122: 108877. |
[26] | HAN S, ZHOU W B, LU S, et al. Regularly updated deterministic policy gradient algorithm[J]. Knowledge-Based Systems, 2021,214: 106736. |
[27] |
张俊杰, 张聪, 赵涵捷. 重复利用状态值的竞争深度Q网络算法[J]. 计算机工程与应用, 2021, 57(4): 134-140.
doi: 10.3778/j.issn.1002-8331.2007-0125 |
ZHANG Junjie, ZHANG Cong, ZHAO Hanjie. Dueling deep Q network algorithm with state value reuse[J]. Computer Engineering and Applications, 2021, 57(4): 134-140.
doi: 10.3778/j.issn.1002-8331.2007-0125 |
|
[28] | 王壮. 非高斯噪声下基于有界非线性函数的快速盲均衡方法[J]. 通信技术, 2020, 53(7): 1606-1611. |
WANG Zhuang. Fast blind equalization based on bounded non-linear function under non-Gaussian noise[J]. Communications Technology, 2020, 53(7): 1606-1611. | |
[29] | GU Z Y, SHE C Y, HARDJAWANA W, et al. Knowledge-assisted deep reinforcement learning in 5G scheduler design: from theoretical framework to implementation[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 2014-2028. |
[30] | KOBAYASHI T, ILBOUDO W E L. T-soft update of target network for deep reinforcement learning[J]. Neural Networks, 2021,136: 63-71. |
[31] | ZHANG X S, LI C Z, XU B, et al. Dropout deep neural network assisted transfer learning for bi-objective Pareto AGC dispatch[J]. IEEE Transactions on Power Systems, 2022, 38(2): 1432-1444. |
[32] | WEI Q, MA H L, CHEN C L, et al. Deep reinforcement learning with quantum-inspired experience replay[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9326-9338. |
[33] | ZHAO L P, ALHOSHAN W, FERRARI A, et al. Natural language processing for requirements engineering: A systematic mapping study[J]. ACM Computing Surveys, 2022, 54(3): 1-41. |
[34] | 朱张莉, 饶元, 吴渊, 等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6): 1-11. |
ZHU Zhangli, RAO Yuan, WU Yuan, et al. Research progress of attention mechanism in deep learning[J]. Journal of Chinese Information Processing, 2019, 33(6):1-11. |
[1] | WANG Xiaoyan, WU Shuquan. Research on capacity allocation for source-grid-load-storage systems based on improved PSO [J]. Integrated Intelligent Energy, 2024, 46(9): 28-36. |
[2] | FAN Yanbo, XIONG Yaxuan, LI Xiang, TIAN Xi, YANG Yang. Advancement in multi-objective optimization for building energy use based on genetic algorithms [J]. Integrated Intelligent Energy, 2024, 46(9): 69-85. |
[3] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[4] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[5] | SUN Wenjie, YANG Zhile, GUO Yuanjun, YAO Wenjiao, XU Huan, ZHOU Bowen. An estimation method for state of health of sodium-ion batteries [J]. Integrated Intelligent Energy, 2024, 46(7): 74-80. |
[6] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
[7] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[8] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[9] | DU Long, SHA Jianxiu, FAN Bei, HU Jingwei, LIU Zengji. Electricity theft detection method for distribution network CPS based on cyber and physical data [J]. Integrated Intelligent Energy, 2024, 46(5): 20-29. |
[10] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[11] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[12] | CHEN Yang, WENG Weijie, HUANG Jiangdong, ZOU Tao, JIANG Wei. Research on multi-path balancing topology based on transformers [J]. Integrated Intelligent Energy, 2024, 46(4): 68-77. |
[13] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[14] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[15] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||