Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (2): 79-87.doi: 10.3969/j.issn.2097-0706.2025.02.008
• New Power System Scheduling based on AI • Previous Articles Next Articles
YANG Lanqian1(), GUO Jinmin2(
), TIAN Huili1, HUANG Chang2,*(
), LIU Min2, CAI Yang2
Received:
2024-10-18
Revised:
2024-12-06
Published:
2025-02-25
Contact:
HUANG Chang
E-mail:1509488787@qq.com;guojm@stu2022.jnu.edu.cn;huangc@jnu.edu.cn
Supported by:
CLC Number:
YANG Lanqian, GUO Jinmin, TIAN Huili, HUANG Chang, LIU Min, CAI Yang. Research on multi-scale load prediction in parks based on CNN-LSTM-Self attention[J]. Integrated Intelligent Energy, 2025, 47(2): 79-87.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.02.008
[1] | 陈艳波, 张宁, 李嘉祺, 等. 零碳园区研究综述及展望[J]. 中国电机工程学报, 2024, 44(14): 5496-5517. |
CHEN Yanbo, ZHANG Ning, LI Jiaqi, et al. Review and prospect of zero carbon park research[J]. Proceedings of the CSEE, 2024, 44(14): 5496-5517. | |
[2] |
刘天阳, 高亚静, 谢典, 等. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52.
doi: 10.3969/j.issn.2097-0706.2023.08.006 |
LIU Tianyang, GAO Yajing, XIE Dian, et al. Analysis on the construction path of functional zero-carbon parks[J]. Integrated Intelligent Energy, 2023, 45(8): 44-52.
doi: 10.3969/j.issn.2097-0706.2023.08.006 |
|
[3] | 葛磊蛟, 李京京, 李昌禄, 等. 面向零碳园区的综合能源系统优化运行技术综述[J]. 电网技术, 2024, 48(5): 1821-1835. |
GE Leijiao, LI Jingjing, LI Changlu, et al. Overview of integrated energy system optimal operation technology for zero-carbon parks[J]. Power System Technology, 2024, 48(5): 1821-1835. | |
[4] | 吉博文, 吴张傲. 指数平滑法在电力系统负荷预测中的应用[J]. 科技创新与应用, 2018, 8(30): 173-174. |
JI Bowen, WU Zhang'ao. Application of exponential smoothing method in power system load forecasting[J]. Technology Innovation and Application, 2018, 8(30): 173-174. | |
[5] | PARREÑO S J E. Forecasting electricity consumption in the Philippines using ARIMA models[J]. International Journal of Machine Learning and Computing, 2022, 12(6): IJMLC.2022. 12.6.1112. |
[6] | 罗权. 基于自适应卡尔曼滤波在气象影响下负荷预测[J]. 计算机测量与控制, 2020, 28(1): 156-159, 165. |
LUO Quan. Short-term load forecasting under meteorological influence based on adaptive Kalman filter[J]. Computer Measurement & Control, 2020, 28(1): 156-159, 165. | |
[7] | 安颖坤, 朱永丹. 基于线性回归法和指数平滑法对电力负荷的预测[J]. 电力设备管理, 2021(5): 177-179. |
AN Yingkun, ZHU Yongdan. Power load forecasting based on linear regression method and exponential smoothing method[J]. Electric Power Equipment Management, 2021(5): 177-179. | |
[8] | CHAPAGAIN K, KITTIPIYAKUL S. Short-term electricity demand forecasting with seasonal and interactions of variables for thailand[C]// 2018 International Electrical Engineering Congress (iEECON). IEEE, 2018: 1-4. |
[9] | AMIN M A A, HOQUE M A. Comparison of ARIMA and SVM for short-term load forecasting[C]// 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON). IEEE, 2019: 1-6. |
[10] |
高明, 郝妍. 基于BiLSTM网络与误差修正的超短期负荷预测[J]. 综合智慧能源, 2023, 45(1): 31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
GAO Ming, HAO Yan. Ultra-short-term load forecasting based on BiLSTM network and error correction[J]. Integrated Intelligent Energy, 2023, 45(1): 31-40.
doi: 10.3969/j.issn.2097-0706.2023.01.004 |
|
[11] | CHAFAK T, NUR S, CENK G, et al. Short term load forecasting based on ARIMA and ANN approaches[J]. Energy Reports, 2023, 9(S3): 550-557. |
[12] | 庄立生. 融合气象特征的BP神经网络电力系统短期负荷预测[J]. 山东电力技术, 2023, 50(11): 51-59. |
ZHUANG Lisheng. Short-term load forecasting for power systems based on BP neural networks[J]. Shandong Electric Power, 2023, 50(11): 51-59. | |
[13] | AGUILAR M E, ANTONIO N. Short-term electricity load forecasting with machine learning[J]. Information, 2021, 12(2): 50. |
[14] | COSTAS M C, VILLANUEVA D, OLLER P E, et al. Load forecasting with machine learning and deep learning methods[J]. Applied Sciences, 2023, 13(13): APP13137933. |
[15] | IOANNIS P, ELENI V, PAPAKOSTAS GEORGE A. A survey on deep learning for building load forecasting[J]. Mathematical Problems in Engineering, 2022, 2022: 1008491. |
[16] | ZABOLI A, KASIMALLA S R, PARK K, et al. A comprehensive review of behind-the-meter distributed energy resources load forecasting: Models, challenges, and emerging technologies[J]. Energies, 2024, 17(11): en17112534. |
[17] |
陈胜, 刘鹏飞, 王平, 等. 基于LSTM人工神经网络的电力系统负荷预测方法[J]. 沈阳工业大学学报, 2024, 46(1): 66-71.
doi: 10.7688/j.issn.1000-1646.2024.01.12 |
CHEN Sheng, LIU Pengfei, WANG Ping, et al. Load forecasting method of power system based on LSTM artificial neural network[J]. Journal of Shenyang University of Technology, 2024, 46(1): 66-71.
doi: 10.7688/j.issn.1000-1646.2024.01.12 |
|
[18] | 满达, 张卓凡, 张金金, 等. 基于LSTM的高校建筑电力负荷预测方法[J]. 建筑电气, 2021, 40(11): 58-63. |
MAN Da, ZHANG Zhuofan, ZHANG Jinjin, et al. Power load forecast method for university buildings based on LSTM[J]. Building Electricity, 2021, 40(11): 58-63. | |
[19] | 张腾达, 李琦, 陈波. 基于LSTM的热力站短期热负荷预测研究[J]. 计算机仿真, 2022, 39(9): 507-512. |
ZHANG Tengda, LI Qi, CHEN Bo. Research on short-term heat load forecasting of thermal power station based on LSTM[J]. Computer Simulation, 2022, 39(9): 507-512. | |
[20] | ZANG H X, XU R Q, CHENG L L, et al. Residential load forecasting based on LSTM fusing self-attention mechanism with pooling[J]. Energy, 2021, 229: 120682. |
[21] | SONG J C, ZHANG L Y, XUE G X, et al. Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model[J]. Energy and Buildings, 2021, 243: 110998. |
[22] | RAFI S H, DEEBA S R, HOSSAIN E. A short-term load forecasting method using integrated CNN and LSTM network[J]. IEEE Access, 2021, 9: 32436-32448. |
[23] | GUO Y X, LI Y, QIAO X B, et al. BiLSTM multitask learning-based combined load forecasting considering the loads coupling relationship for multi energy system[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3481-3492. |
[24] | 田浩含, 张智晟, 于道林. 基于改进LSTM的区域综合能源系统多元负荷短期预测研究[J]. 电力系统及其自动化学报, 2021, 33(9): 130-137. |
TIAN Haohan, ZHANG Zhisheng, YU Daolin. Research on multi-load short-term forecasting of regional integrated energy system based on improved LSTM[J]. Proceedings of the CSU-EPSA, 2021, 33(9): 130-137. | |
[25] | 张文栋, 刘子琨, 梁涛, 等. 基于CNN-LSTM的综合能源系统负荷预测模型[J]. 重庆邮电大学学报(自然科学版), 2023, 35(2): 254-262. |
ZHANG Wendong, LIU Zikun, LIANG Tao, et al. Load prediction model of integrated energy system based on CNN-LSTM[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(2): 254-262. | |
[26] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[27] | GRAVES A. Supervised sequence labelling with recurrent neural networks[M]. Berlin: 2012. |
[28] |
徐聪, 胡永锋, 张爱平, 等. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006 |
XU Cong, HU Yongfeng, ZHANG Aiping, et al. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening[J]. Integrated Intelligent Energy, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006 |
|
[29] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008. |
[1] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[2] | DU Long, SHA Jianxiu, FAN Bei, HU Jingwei, LIU Zengji. Electricity theft detection method for distribution network CPS based on cyber and physical data [J]. Integrated Intelligent Energy, 2024, 46(5): 20-29. |
[3] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[4] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[5] | LU Weiwei, YIN Linfei. Fine non-invasive load monitoring based on CEEMD and GWO-LSTM [J]. Integrated Intelligent Energy, 2023, 45(11): 36-44. |
[6] | OUYANG Ting, CAI Ye, WANG Weiyu, TANG Xiafei, TAN Yudong. Overall day-ahead scheduling optimization for pumped-storage power stations considering the uncertainty of wind and photovoltaic power prediction [J]. Integrated Intelligent Energy, 2022, 44(11): 20-27. |
[7] | YANG Mingming. Wind speed correction for wind turbine based on convolutional neural network [J]. Huadian Technology, 2021, 43(5): 75-79. |
[8] | YIN Shuo, GUO Xingwu, YAN Jing, YANG Qinchen, ZHANG Peng. Study on optimized operation on integrated energy system in parks with high permeability and carbon emission constraints [J]. Huadian Technology, 2021, 43(4): 1-7. |
[9] | WANG Xiao. Study on power system load prediction method for medium and long term based on comprehensive model [J]. Huadian Technology, 2013, 35(6): 40-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||