Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (3): 62-72.doi: 10.3969/j.issn.2097-0706.2025.03.006
• New Power System Scheduling based on AI • Previous Articles Next Articles
LIU Yining1(), CHEN Baian1, DU Pengcheng1, LIN Xiaogang2(
), JIANG Meihui1,3,*(
)
Received:
2024-12-31
Revised:
2025-02-11
Accepted:
2025-03-05
Published:
2025-03-25
Contact:
JIANG Meihui
E-mail:2412392073@st.gxu.edu.cn;xg_lin_nuaa@126.com;meihuijiang@yeah.net
Supported by:
CLC Number:
LIU Yining, CHEN Baian, DU Pengcheng, LIN Xiaogang, JIANG Meihui. Detection and repair of abnormal load data of public buildings based on MDLOF-iForest and M-KNN-Slope[J]. Integrated Intelligent Energy, 2025, 47(3): 62-72.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.03.006
Table 3
Error evaluation of prediction models before abnormal data detection and repair
模型 | 办公公共建筑 | 商业公共建筑 | ||
---|---|---|---|---|
RMSE/kW | MAE | RMSE/kW | MAE | |
XGBoost | 97.277 9 | 66.267 5 | 97.346 7 | 67.144 7 |
LSTM | 85.846 3 | 66.032 4 | 86.228 6 | 67.068 3 |
BP | 177.869 3 | 126.422 0 | 175.533 1 | 128.534 1 |
SVM | 126.991 6 | 95.372 1 | 129.211 0 | 95.538 3 |
Table 4
Error evaluation of prediction models after abnormal data detection and repair
模型 | 办公公共建筑 | 商业公共建筑 | ||
---|---|---|---|---|
RMSE/kW | MAE | RMSE/kW | MAE | |
XGBoost | 92.398 2 | 61.398 2 | 92.453 7 | 65.506 9 |
LSTM | 70.556 2 | 57.624 9 | 70.853 4 | 58.164 5 |
BP | 152.249 9 | 109.552 4 | 152.357 6 | 112.438 4 |
SVM | 114.463 2 | 89.463 2 | 116.452 2 | 90.233 8 |
[1] | 中国建筑节能协会, 重庆大学城乡建设与发展研究院. 中国建筑能耗与碳排放研究报告(2023年)[J]. 建筑, 2024(2): 46-59. |
[2] |
孙健, 张云帆, 蔡潇龙, 等. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002 |
SUN Jian, ZHANG Yunfan, CAI Xiaolong, et al. Optimal scheduling of HVAC systems based on predicted loads[J]. Integrated Intelligent Energy, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002 |
|
[3] |
樊颜搏, 熊亚选, 李想, 等. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009 |
FAN Yanbo, XIONG Yaxuan, LI Xiang, et al. Advancement in multi-objective optimization for building energy use based on genetic algorithms[J]. Integrated Intelligent Energy, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009 |
|
[4] | JAMSHIDI E J, YUSUP Y, KAYODE J S, et al. Detecting outliers in a univariate time series dataset using unsupervised combined statistical methods: A case study on surface water temperature[J]. Ecological Informatics, 2022, 69: 101672. |
[5] | 顾国庆, 李晓辉. 基于箱线图异常检测的指数加权平滑预测模型[J]. 计算机与现代化, 2021(1): 28-33. |
GU Guoqing, LI Xiaohui. Exponential weighted smoothing prediction model based on abnormal detection of box-plot[J]. Computer and Modernization, 2021(1): 28-33. | |
[6] | ZHANG J F, ZHANG H, DING S, et al. Power consumption predicting and anomaly detection based on transformer and K-means[J]. Frontiers in Energy Research, 2021, 9: 779587. |
[7] | JIN F, WU H, LIU Y, et al. Varying-scale HCA-DBSCAN-based anomaly detection method for multi-dimensional energy data in steel industry[J]. Information Sciences, 2023, 647: 119479. |
[8] | LIU X, DING Y, TANG H, et al. A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data[J]. Energy and Buildings, 2021, 231: 110601. |
[9] | 王锐. 基于改进LOF的高维数据异常检测方法[J]. 电信工程技术与标准化, 2023, 36(3):41-45,62. |
WANG Rui. Anomaly detection for high-dimensional data based on improved LOF[J]. Telecom Engineering Technics and Standardization, 2003, 36(3):41-45,62. | |
[10] | LESOUPLE J, BAUDOIN C, SPIGAI M, et al. Generalized isolation forest for anomaly detection[J]. Pattern Recognition Letters, 2021, 149: 109-119. |
[11] | WANG X L, AHN S H. Real-time prediction and anomaly detection of electrical load in a residential community[J]. Applied Energy, 2020, 259: 114145. |
[12] | LI K K, TANG L P, YANG X M. Alleviating limit cycling in training GANs with an optimization technique[J]. Science China Mathematics, 2024, 67(6): 1287-1316. |
[13] | 陆旦宏, 范文尧, 杨婷, 等. 基于生成对抗Transformer的电力负荷数据异常检测[J]. 电力工程技术, 2024, 43(1): 157-164. |
LU Danhong, FAN Wenyao, YANG Ting, et al. Anomaly detection of power load data based on Transformer and generative adversarial networks[J]. Electric Power Engineering Technology, 2024, 43(1): 157-164. | |
[14] | 曾静, 娄冰, 吕娜, 等. 基于多特征和LOF的用户负荷突变检测[J]. 浙江电力, 2023, 42(2):90-97. |
ZENG Jing, LOU Bing, LYU Na, et al. Abrupt user load change detection based on multiple features and LOF algorithm[J]. Zhejiang Electric Power, 2023, 42(2):90-97. | |
[15] | HIMEUR Y, ALSALEMI A, BENSAALI F, et al. Smart power consumption abnormality detection in buildings using micromoments and improved K-nearest neighbors[J]. International Journal of Intelligent Systems, 2021, 36(6): 2865-2894. |
[16] | XU S Y, LIU H Y, DUAN L T, et al. An improved LOF outlier detection algorithm[C]//Proceedings of 2021 IEEE International Conference on Artificial Intelligence and Computer Applications(ICAICA), IEEE, 2021: 113-117. |
[17] | SOLÍS-VILLARREAL J A, SOTO-MENDOZA V, NAVARRO-ACOSTA J A, et al. Energy consumption outlier detection with AI models in modern cities: A case study from north-eastern Mexico[J]. Algorithms, 2024, 17(8): 322. |
[18] | 李沛智, 刘立群, 薄轶帅. 基于密度子空间孤立森林的异常用电检测[J]. 科学技术与工程, 2024, 24(10): 4115-4123. |
LI Peizhi, LIU Liqun, BO Yishuai. Anomalous electricity usage detection based on density subspace isolated forest[J]. Science Technology and Engineering, 2024, 24(10): 4115-4123. | |
[19] |
肖碧涛, 刘宇, 赖晓路. 基于动态潜变量回归的风电机组叶片结冰监测研究[J]. 综合智慧能源, 2024, 46(12): 29-35.
doi: 10.3969/j.issn.2097-0706.2024.12.004 |
XIAO Bitao, LIU Yu, LAI Xiaolu. Wind turbine blades icing monitoring based on dynamic latent variable regression[J]. Integrated Intelligent Energy, 2024, 46(12): 29-35.
doi: 10.3969/j.issn.2097-0706.2024.12.004 |
|
[20] | 赵荣珍, 赵楠. 结合扰动集成RBF的故障识别方法[J]. 兰州理工大学学报, 2022, 48(6): 40-45. |
ZHAO Rongzhen, ZHAO Nan. Fault identification method combined with disturbance ensemble RBF[J]. Journal of Lanzhou University of Technology, 48(6): 40-45. | |
[21] |
BA P F, ZHU S L, CHAI H Y, et al. Structural monitoring data repair based on a long short-term memory neural network[J]. Scientific Reports, 2024, 14: 9974.
doi: 10.1038/s41598-024-60196-2 pmid: 38693161 |
[22] | 林范龙, 林昀, 黄庆仕, 等. 智能电网中的异常数据修复模型研究[J]. 微型电脑应用, 2024, 40(9): 134-138. |
LIN Fanlong, LIN Yun, HUANG Qingshi, et al. Research on abnormal data repair model in smart grid[J]. Microcomputer Applications, 2024, 40(9): 134-138. | |
[23] | ZHANG S C. Challenges in KNN classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(10): 4663-4675. |
[24] | HONG G, CHOI G S, EUM J Y, et al. The hourly energy consumption prediction by KNN for buildings in community buildings[J]. Buildings, 2022, 12(10): 1636. |
[25] | YAN H Y, MA L D, ZHAO T Y, et al. Research on repair method of abnormal energy consumption data of lighting and plug based on similar features[J]. Energy and Buildings, 2022, 268: 112155. |
[26] | 刘立巍, 周建新, 刘培栋, 等. 基于KNN-LSTM的区域热负荷短期预测及在机组热电可行域的应用研究[J]. 热能动力工程, 2023, 38(3):91-97. |
LIU Liwei, ZHOU Jianxin, LIU Peidong, et al. Short-term regional heat load prediction using KNN-LSTM and its application in CHP feasible operation region[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(3):91-97. | |
[27] | 许艺颖. 建筑能耗监测平台异常数据的辨识与修复[D]. 大连: 大连理工大学, 2019. |
XU Yiying. Identification and repair of abnormal data in energy consumption monitoring platform[D]. Dalian: Dalian University of Technology, 2019. |
[1] | ZHANG Lu, LU Anshan, HUA Yang, LIU Tianhao, ZHANG Dongdong. Review of research on situation awareness in resilient power systems [J]. Integrated Intelligent Energy, 2025, 47(3): 1-14. |
[2] | DI Liang, DONG Jie, YAN Xinyue, ZHEN Cheng, TIAN Zhe, NIU Jide. Quantifying method for buildings' demand response potential applied to market access condition determination [J]. Integrated Intelligent Energy, 2025, 47(3): 15-22. |
[3] | YANG Lijie, DENG Zhenyu, CHEN Zuoshuang, HUANG Chao, JIANG Meihui, ZHU Hongyu. Non-intrusive load identification for public buildings based on MSCNN-BiGRU-MLP model [J]. Integrated Intelligent Energy, 2025, 47(3): 23-31. |
[4] | ZHANG Dongdong, SHAN Linke, LIU Tianhao. Review on the application of artificial intelligence in data mining and wind and photovoltaic power forecasting [J]. Integrated Intelligent Energy, 2025, 47(3): 32-46. |
[5] | ZHANG Dongdong, LI Fangning, LIU Tianhao. Key technologies for load forecasting in new power systems and their applications in diverse scenario [J]. Integrated Intelligent Energy, 2025, 47(3): 47-61. |
[6] | JIANG Meihui, XU Zhenjiang, NIU Tongke, ZHU Hongyu, LI Xiang. Intra-day multi-time scale rolling optimization scheduling of mine integrated energy system considering integrated demand response [J]. Integrated Intelligent Energy, 2025, 47(3): 73-83. |
[7] | CUI Zaiyue, YANG Yang, WANG Lidi. Three-phase unbalance optimization of distribution network considering load demand response [J]. Integrated Intelligent Energy, 2025, 47(3): 92-101. |
[8] | YANG Jian, HAO Guojie, WU Xinyue, GUO Mingqiang, CHEN Chong, LEI Zhimin. Optimization of travel routes and economic operation strategies for integrated transportation and energy systems considering EV carbon emissions [J]. Integrated Intelligent Energy, 2025, 47(2): 41-49. |
[9] | LIU Bin, SUN Zhou, JIANG Zhiwei, GUO Mingyang, CAO Can. Digital empowerment of transport-energy integration:Technological pathways, application scenarios and future prospects [J]. Integrated Intelligent Energy, 2025, 47(2): 1-12. |
[10] | YUAN Xiaoke, SHEN Shilan, ZHANG Maosong, SHI Chenxu, YANG Lingxiao. Optimal scheduling of intelligent virtual power plants based on explainable reinforcement learning [J]. Integrated Intelligent Energy, 2025, 47(1): 1-9. |
[11] | SU Rui, WANG Xilong, JIANG Yan, SONG Chenhui. Scheduling planning for virtual power plants based on an improved cost allocation method [J]. Integrated Intelligent Energy, 2025, 47(1): 10-17. |
[12] | XU Qiang. Optimization configuration method of distributed photovoltaic energy storage systems based on NSGA-Ⅲ algorithm [J]. Integrated Intelligent Energy, 2025, 47(1): 26-33. |
[13] | JIANG Yan, SONG Chenhui, ZHANG Ning, HE Bo, LU Yuting. Study on optimized operation model and strategy for virtual power plants considering multi-energy coupling [J]. Integrated Intelligent Energy, 2025, 47(1): 34-41. |
[14] | QU Qi, TENG Fei, GUO Yuxin, ZHANG Linxue. Distributed energy management of port integrated energy system considering computing power demands [J]. Integrated Intelligent Energy, 2025, 47(1): 42-50. |
[15] | HU Jiacheng, ZHANG Ning, CAO Yutong, HU Cungang. Load optimization scheduling decision for virtual power plants with distributed energy accessed [J]. Integrated Intelligent Energy, 2025, 47(1): 62-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||