Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (3): 23-31.doi: 10.3969/j.issn.2097-0706.2025.03.003
• Load Optimization and Control • Previous Articles Next Articles
YANG Lijie1(), DENG Zhenyu1, CHEN Zuoshuang1, HUANG Chao2, JIANG Meihui1,3(
), ZHU Hongyu1,3,*(
)
Received:
2024-12-31
Revised:
2025-03-12
Accepted:
2025-03-25
Published:
2025-03-25
Contact:
ZHU Hongyu
E-mail:yanglijie0721@163.com;meihuijiang@yeah.net;hongyuzhu@imut.edu.cn
Supported by:
CLC Number:
YANG Lijie, DENG Zhenyu, CHEN Zuoshuang, HUANG Chao, JIANG Meihui, ZHU Hongyu. Non-intrusive load identification for public buildings based on MSCNN-BiGRU-MLP model[J]. Integrated Intelligent Energy, 2025, 47(3): 23-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.03.003
[1] |
邹风华, 朱星阳, 殷俊平, 等. “双碳” 目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40.
doi: 10.3969/j.issn.2097-0706.2024.08.005 |
ZOU Fenghua, ZHU Xingyang, YIN Junping, et al. Development trend analysis on building energy systems under "dual carbon" target[J]. Integrated Intelligent Energy, 2024, 46(8): 36-40.
doi: 10.3969/j.issn.2097-0706.2024.08.005 |
|
[2] |
DING C, KE J, LEVINE M, et al. Potential of artificial intelligence in reducing energy and carbon emissions of commercial buildings at scale[J]. Nature Communications, 2024, 15(1): 5916.
doi: 10.1038/s41467-024-50088-4 pmid: 39004671 |
[3] | RAFIQ H, MANANDHAR P, RODRIGUEZ-UBINAS E, et al. A review of current methods and challenges of advanced deep learning-based non-intrusive load monitoring (NILM) in residential context[J]. Energy and Buildings, 2024, 305: 113890. |
[4] | ANGELIS G F, TIMPLALEXIS C, KRINIDIS S, et al. NILM applications: Literature review of learning approaches, recent developments and challenges[J]. Energy and Buildings, 2022, 261: 111951. |
[5] | 李亦非, 王芳, 张雅静, 等. 考虑时空耦合特性的非侵入式综合能源系统多能设备负荷辨识方法[J]. 科学技术与工程, 2024, 24(26): 11283-11293. |
LI Yifei, WANG Fang, ZHANG Yajing, et al. Non-invasive comprehensive energy system multi energy equipment load identification method considering spatiotemporal coupling characteristics[J]. Science Technology and Engineering, 2024, 24(26): 11283-11293. | |
[6] | 龚玉婕. 基于非侵入式负荷分解的办公建筑用电行为研究[D]. 广州: 广东财经大学, 2022. |
GONG Yujie. Research on electricity consumption behavior of office buildings based on non-intrusive load decomposition[D]. Guangzhou: Guangdong University of Finance & Economics, 2022. | |
[7] |
樊颜搏, 熊亚选, 李想, 等. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009 |
FAN Yanbo, XIONG Yaxuan, LI Xiang, et al. Advancement in multi-objective optimization for building energy use based on genetic algorithms[J]. Integrated Intelligent Energy, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009 |
|
[8] | 杨秀, 吴吉海, 孙改平, 等. 基于深度学习和迁移学习的公共楼宇非侵入式负荷分解[J]. 电网技术, 2022, 46(3): 1160-1169. |
YANG Xiu, WU Jihai, SUN Gaiping, et al. Non-intrusive load decomposition of public buildings based on deep learning and transfer learning[J]. Power System Technology, 2022, 46(3): 1160-1169. | |
[9] |
孙健, 张云帆, 蔡潇龙, 等. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002 |
SUN Jian, ZHANG Yunfan, CAI Xiaolong, et al. Optimal scheduling of HVAC systems based on predicted loads[J]. Integrated Intelligent Energy, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002 |
|
[10] | NORFORD L K, LEEB S B. Non-intrusive electrical load monitoring in commercial buildings based on steady-state and transient load-detection algorithms[J]. Energy and Buildings, 1996, 24(1): 51-64. |
[11] | AKBAR M K, AMAYRI M, BOUGUILA N. A novel non-intrusive load monitoring technique using semi-supervised deep learning framework for smart grid[J]. Building Simulation, 2024, 17(3): 441-457. |
[12] | SILVA NOLASCO LDA, LAZZARETTI A E, MULINARI B M. DeepDFML-NILM: A new CNN-based architecture for detection,feature extraction and multi-label classification in NILM signals[J]. IEEE Sensors Journal, 2022, 22(1): 501-509. |
[13] | HUANG L, CHEN S J, LING Z X, et al. Non-invasive load identification based on LSTM-BP neural network[J]. Energy Reports, 2021, 7: 485-492. |
[14] | ZHOU X X, FENG J R, LI Y. Non-intrusive load decomposition based on CNN-LSTM hybrid deep learning model[J]. Energy Reports, 2021, 7: 5762-5771. |
[15] | YUAN J, JIN R, WANG L D, et al. A Nonintrusive load identification method based on dualbranch attention GRU fusion network[J]. IEEE Transactions on Instrumentation and Measurement, 2024,73:1-10. |
[16] | CHEN T, QIN H Y, LI X S, et al. A non-intrusive load monitoring method based on feature fusion and SE-ResNet[J]. Electronics, 2023, 12(8): 1909. |
[17] | DJORDJEVIC S, SIMIC M. Nonintrusive identification and type recognition of household appliances based on the harmonic analysis of the steady-state current[J]. Electrical Engineering, 2023, 105(5): 3319-3328. |
[18] | MEIER A, CAUTLEY D. Practical limits to the use of non-intrusive load monitoring in commercial buildings[J]. Energy and Buildings, 2021, 251: 111308. |
[19] | 裘星, 尹仕红, 张之涵, 等. 基于V-I轨迹与高次谐波特征的非侵入式负荷识别方法[J]. 电力工程技术, 2021, 40(6): 34-42. |
QIU Xing, YIN Shihong, ZHANG Zhihan, et al. Non-intrusive load identification method based on V-I trajectory and high-order harmonic feature[J]. Electric Power Engineering Technology, 2021, 40(6): 34-42. | |
[20] |
石鑫, 刘奇央, 高峰. 深度神经网络在新型能源系统中的应用及展望[J]. 综合智慧能源, 2025, 47(2): 88-101.
doi: 10.3969/j.issn.2097-0706.2025.02.009 |
SHI Xin, LIU Qiyang, GAO Feng. Application and prospects of deep neural network in new energy systems[J]. Integrated Intelligent Energy, 2025, 47(2): 88-101.
doi: 10.3969/j.issn.2097-0706.2025.02.009 |
|
[21] | ZAERI N, ASHOURI A, GUNAY H B, et al. Disaggregation of electricity and heating consumption in commercial buildings with building automation system data[J]. Energy and Buildings, 2022, 258: 111791. |
[22] | 刘航, 刘春阳, 赵浩然, 等. 基于深度学习的公共楼宇电-气负荷非侵入式分解[J]. 电网技术, 2023, 47(3): 1188-1197. |
LIU Hang, LIU Chunyang, ZHAO Haoran, et al. Non-intrusive disaggregation of electricity and gas load in public buildings based on deep learning[J]. Power System Technology, 2023, 47(3): 1188-1197. | |
[23] | 刘一宁, 陈柏安, 杜鹏程, 等. 基于MDLOF-iForest和M-KNN-Slope的公共建筑负荷异常数据识别与修复[J]. 综合智慧能源:1-11(2025-03-05)[2025-03-10]. http://kns.cnki.net/kcms/detail/41.1461.tk.20250303.0944.002.html. |
LIU Yining, CHEN Baian, DU Pengcheng, et al. Detection and repair of abnormal load data of public buildings based on MDLOF-iForest and M-KNN-Slope[J]. Integrated Intelligent Energy,1-11(2025-03-05)[2025-03-10]. http://kns.cnki.net/kcms/detail/41.1461.tk.20250303.0944.002.html. | |
[24] | MULINARI B M, LINHARES R R, DE CAMPOS D P, et al. A new set of steady-state and transient features for power signature analysis based on V-I trajectory[C]//Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America),IEEE, 2019: 1-6. |
[25] | DUC M L, BILIK P, MARTINEK R. Harmonics signal feature extraction techniques: A review[J]. Mathematics, 2023, 11(8): 1877. |
[1] | LIU Yining, CHEN Baian, DU Pengcheng, LIN Xiaogang, JIANG Meihui. Detection and repair of abnormal load data of public buildings based on MDLOF-iForest and M-KNN-Slope [J]. Integrated Intelligent Energy, 2025, 47(3): 62-72. |
[2] | QU Qi, TENG Fei, GUO Yuxin, ZHANG Linxue. Distributed energy management of port integrated energy system considering computing power demands [J]. Integrated Intelligent Energy, 2025, 47(1): 42-50. |
[3] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[4] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[5] | LYU Yongsheng, ZHANG Xiaoyu, WANG Xirong, GUO Peiqian. Application and prospect of federated learning in new power systems [J]. Integrated Intelligent Energy, 2024, 46(11): 54-64. |
[6] | BAO Yixin, XU Luoyun, YANG Qiang. Optimized control method for flexible load of a building complex based on MADDPG reinforcement learning [J]. Integrated Intelligent Energy, 2023, 45(7): 61-69. |
[7] | DOU Zhenlan, SHEN Jianzhong, ZHANG Chunyan, JIANG Jingjing, CHEN Qi, CHEN Jing. Time-decoupling hierarchical energy management of integrated energy systems considering supply and demand uncertainty [J]. Integrated Intelligent Energy, 2023, 45(6): 17-24. |
[8] | YIN Linfei, LIU Jinyuan. Smart home energy management based on artificial emotion LSTM algorithm [J]. Integrated Intelligent Energy, 2023, 45(11): 27-35. |
[9] | LIU Jing, SHI Mengge, HU Yongfeng. Multi-stage energy management strategy for smart buildings with BESS [J]. Integrated Intelligent Energy, 2022, 44(3): 29-37. |
[10] | LIU Jindou, CHENG Jie, YU Gaowei. Research on a PV-energy storage system with integration of grid-connection and disconnection modes based on low-pressure DC distribution network [J]. Huadian Technology, 2021, 43(4): 63-70. |
[11] |
WU Xin1, WAN Zuming1, WU Ning2, YU Lei2, LIANG Huixian3.
Development and application of supervision and management of plant auxiliary power in thermal power plant
[J]. Huadian Technology, 2018, 40(3): 30-32.
|
[12] | ZHOU Chongbo1, CHENG Xueshan2, REN Huaimin3. A research on measuring and calculating methods of energy saving benefit for the circulating water wasteheat utilization project in thermal power plant [J]. Huadian Technology, 2014, 36(7): 62-64. |
[13] | TENG Lihui. Application of contract energy management in thermal power enterprises [J]. Huadian Technology, 2014, 36(6): 56-58. |
[14] | ZHENG Mingguang. Research of relay protection management system based on CIM [J]. Huadian Technology, 2010, 32(7): 53-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||