Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (3): 15-22.doi: 10.3969/j.issn.2097-0706.2025.03.002
• Load Optimization and Control • Previous Articles Next Articles
DI Liang1(), DONG Jie1(
), YAN Xinyue1(
), ZHEN Cheng2(
), TIAN Zhe2,*(
), NIU Jide2(
)
Received:
2024-05-06
Revised:
2024-08-01
Accepted:
2024-12-27
Published:
2025-03-25
Contact:
TIAN Zhe
E-mail:9812715@qq.com;20060350@ceic.com;12032042@ceic.com;zhencheng@tju.edu.cn;tianzhe@tju.edu.cn;niujide@tju.edu.cn
Supported by:
CLC Number:
DI Liang, DONG Jie, YAN Xinyue, ZHEN Cheng, TIAN Zhe, NIU Jide. Quantifying method for buildings' demand response potential applied to market access condition determination[J]. Integrated Intelligent Energy, 2025, 47(3): 15-22.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.03.002
Table 2
Input variables and sampling intervals
输入变量 | 取值范围 | |
---|---|---|
物理结构 | 宽度/m | 25~100 |
长宽比 | 1~2 | |
高度/m | 15~100 | |
围护结构 | 窗墙比 | 0.2~0.8 |
围护结构总传热系数/[W·(m2·K)-1] | 3~35 | |
外墙蓄热系数/[W·(m2·K)-1] | 5~15 | |
屋面蓄热系数/[W·(m2·K)-1] | 5~15 | |
用能行为 | 人员密度/(m2·人-1) | 7~13(整数) |
照明密度/(W·m-2) | 6.3~11.7 | |
设备密度/(W·m-2) | 10.5~19.5 | |
内扰水平 | 高,低 | |
需求响应 | 温度上调大小/℃ | 1.0,1.5,2.0 |
开始时间 | 12:00 —15:00 | |
持续时间/h | 1,2 |
[1] | 中国电力企业联合会. 2023年度全国电力供需形势分析预测报告[R]. 北京: 中国电力企业联合会, 2023. |
[2] | 屈博, 刘畅, 李德智, 等. “碳中和”目标下的电能替代发展战略研究[J]. 电力需求侧管理, 2021, 23(2):1-3,9. |
QU Bo, LIU Chang, LI Dezhi, et al. Research on the development strategy of electricity substitution under the target of "carbon neutral"[J]. Power Demand Side Management, 2021, 23(2): 1-3,9. | |
[3] | 李作锋, 陈振宇. 江苏电力需求响应的探索和实践[J]. 电力需求侧管理, 2018, 20(1):4-8. |
LI Zuofeng, CHEN Zhenyu. The exploration and practice of Jiansu power demand response[J]. Power Demand Side Management, 2018, 20(1):4-8. | |
[4] | 张雪纯, 高广玲, 张智晟, 等. 基于需求响应的建筑楼宇综合能源系统调度优化研究[J]. 电力需求侧管理, 2019, 21(4):28-34. |
ZHANG Xuechun, GAO Guangling, ZHANG Zhisheng, et al. Optimal scheduling of building integrated energy system based on demand response[J]. Power Demand Side Management, 2019, 21(4):28-34. | |
[5] |
熊真真. 基于决策树的上海商业建筑虚拟电厂执行力分析[J]. 综合智慧能源, 2023, 45(6): 66-72.
doi: 10.3969/j.issn.2097-0706.2023.06.009 |
XIONG Zhenzhen. Analysis on execution of VPPs for commercial buildings in Shanghai based on decision tree[J]. Integrated Intelligent Energy, 2023, 45(6): 66-72.
doi: 10.3969/j.issn.2097-0706.2023.06.009 |
|
[6] | IEA. Demand Response[EB/OL]. (2023-07-11)[2024-04-05]. https://www.iea.org/energy-system/energy-efficiency-and-demand/demand-response. |
[7] | 山东省能源局. 关于印发2021年全省电力需求响应工作方案的通知[EB/OL]. (2021-07-07)[2024-04-05]. https://www.hangzhou.gov.cn/art/2021/7/7/art_1229063383_1731252.html. |
[8] | QIANG Z, WANG S W, XU X H, et al. A grey-box model of next-day building thermal load prediction for energy-efficient control[J]. International Journal of Energy Research, 2010, 32(15):1418-1431. |
[9] | JUNKER R G, AZAR A G, LOPES R A, et al. Characterizing the energy flexibility of buildings and districts[J]. Applied Energy, 2018, 225: 175-182. |
[10] | KLEIN K, HERKEL S, H-MHENNING, et al. Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options[J]. Applied Energy, 2017, 203: 917-937. |
[11] | ZHEN C, NIU J D, TIAN Z. Research on model calibration method of chiller plants based on error reverse correction with limited data[J]. Energies, 2023, 16:918. |
[12] | PALLONETTO F, DE ROSA M, FINN D P. Impact of intelligent control algorithms on demand response flexibility and thermal comfort in a smart grid ready residential building[J]. Smart Energy, 2021, 2: 100017. |
[13] | LUO N, LANGEVIN J, CHANDRA-PUTRA H, et al. Quantifying the effect of multiple load flexibility strategies on commercial building electricity demand and services via surrogate modeling[J]. Applied Energy, 2022, 309: 118372 |
[14] | YU X R, ERGAN S. Estimating power demand shaving capacity of buildings on an urban scale using extracted demand response profiles through machine learning models[J]. Applied Energy, 2022, 310:118579. |
[15] | ZHU J, NIU J D, TIAN Z, et al. Rapid quantification of demand response potential of building HAVC system via data-driven model[J]. Applied Energy, 2022, 325: 119796. |
[16] | TANG H, WANG S W. A model-based predictive dispatch strategy for unlocking and optimizing the building energy flexibilities of multiple resources in electricity markets of multiple services[J]. Applied Energy, 2022, 305: 117889. |
[17] | 浙江省发展和改革委员会. 省能源局关于开展2021年度电力需求响应工作的通知[EB/OL]. (2021-06-01)[2024-04-05]. https://fzggw.zj.gov.cn/art/2021/6/8/art_1229629046_4906648.html. |
[18] | 天津市工业和信息化局. 市工业和信息化局关于印发2022年电力需求响应实施细则的通知[EB/OL].(2022-01-24)[2024-04-05]. https://gyxxh.tj.gov.cn/ZWGK4147/ZCWJ6355/wjwj/202201/t20220124_5787811.html. |
[19] | 贵州省人民政府. 贵州省能源局关于因覅贵州省电力需求响应实施方案(试行)的通知[EB/OL].(2023-07-10)[2024-04-05]. https://www.guizhou.gov.cn/zwgk/zdlygk/jjgzlfz/nyzy/dlgl/202307/t20230711_80838290.html. |
[20] | 云南省能源局. 云南省能源局关于印发2023年云南省电力需求响应方案的通知[EB/OL]. (2023-04-27)[2024-04-05]. https://nyj.yn.gov.cn/xwdt/gzdt/202304/t20230427_1423367.html. |
[21] |
段秦刚, 陈永椿, 王一, 等. 电力现货市场下激励型需求响应交易机制及出清模型[J]. 电力建设, 2021, 42(6):145-156.
doi: 10.12204/j.issn.1000-7229.2021.06.015 |
DUAN Qingang, CHEN Yongchun, WANG Yi, et al. Trading mechanism and clearing model of incentive demand response in electricity spot market[J]. Electric Power Construction, 2021, 42(6): 145-156.
doi: 10.12204/j.issn.1000-7229.2021.06.015 |
|
[22] | CHEN Y B, CHEN Z, XU P, et al. Quantification of electricity flexibility in demand response: Office building case study[J]. Energy, 2019, 188: 116054. |
[23] | 瞿燕, 宋德萱. 基于统计特征分析的上海办公建筑典型模型建立[J]. 建筑节能, 2022, 50(10): 23-30,51. |
QU Yan, SONG Dexuan. Prototype establishment based on statistical characterization of office buildings in Shanghai[J]. Journal of BEE, 2022, 50(10): 20-30,51. | |
[24] |
孙健, 张云帆, 蔡潇龙, 等. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002 |
SUN Jian, ZHANG Yunfan, CAI Xiaolong, et al. Optimal scheduling of HVAC systems based on predicted loads[J]. Integrated Intelligent Energy, 2024, 46(3): 12-19.
doi: 10.3969/j.issn.2097-0706.2024.03.002 |
|
[25] | 民用建筑热工设计规范:GB 50176—2016[S]. 北京: 中国建筑工业出版社, 2016. |
[26] | 公共建筑节能设计标准:GB 50189—2015[S]. 北京: 中国建筑工业出版社, 2015. |
[27] | 民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S]. 北京: 中国建筑工业出版社, 2012. |
[28] | D-KBUI, NGUYEN T N, GHAZLAN A, et al. Enhancing building energy efficiency by adaptive façade: A computational optimization approach[J]. Applied Energy, 2020, 265. |
[29] | 姚巍. 基于数据挖掘的中央空调能耗预测与控制优化研究[D]. 成都: 电子科技大学, 2022. |
YAO Wei. Research on energy consumption prediction and control optimization of central air conditioning based on data mining[D]. Chengdu: University of Electronic Science and Technology of China, 2022. | |
[30] | HECHT N. Theory of the backpropagation neural network[C]// International 1989 Joint Conference on Neural Networks, 1989:593-605. |
[31] |
徐聪, 胡永锋, 张爱平, 等. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006 |
XU Cong, HU Yongfeng, ZHANG Aiping, et al. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening[J]. Integrated Intelligent Energy, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006 |
[1] | JIANG Meihui, XU Zhenjiang, NIU Tongke, ZHU Hongyu, LI Xiang. Intra-day multi-time scale rolling optimization scheduling of mine integrated energy system considering integrated demand response [J]. Integrated Intelligent Energy, 2025, 47(3): 73-83. |
[2] | CUI Zaiyue, YANG Yang, WANG Lidi. Three-phase unbalance optimization of distribution network considering load demand response [J]. Integrated Intelligent Energy, 2025, 47(3): 92-101. |
[3] | SHI Xin, LIU Qiyang, GAO Feng. Application and prospects of deep neural network in new energy systems [J]. Integrated Intelligent Energy, 2025, 47(2): 88-101. |
[4] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[5] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[6] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[7] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[8] | LI Yangao, LIN Jian, MA Yutong. Risk analysis and response strategies of grid enterprises' electricity purchasing agent service under electricity reform [J]. Integrated Intelligent Energy, 2024, 46(3): 79-86. |
[9] | FAN Pengcheng, ZHANG Yifan, YIN Wenqian, SHI Jiahao, YE Jilei. Energy storage capacity optimization of wind-PV-energy storage systems for buildings considering battery life loss [J]. Integrated Intelligent Energy, 2024, 46(11): 65-72. |
[10] | LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads [J]. Integrated Intelligent Energy, 2024, 46(10): 12-17. |
[11] | JIANG Jian, XU Fengliang, LI Xiaoming, SUN Jianchao, JIANG Huahua, ZHANG Jiaxin, MA Siyuan, YANG Zishuai. Load frequency control of renewable energy power systems considering demand response of air conditioning clusters based on fractional-order integral sliding mode [J]. Integrated Intelligent Energy, 2024, 46(10): 18-25. |
[12] | WU Qi, ZHAO Xuanming, ZHANG Jiacheng, QIU Zhifeng, WANG Yalin. Study on low-carbon demand response considering electricity-carbon price coupling [J]. Integrated Intelligent Energy, 2024, 46(10): 56-66. |
[13] | BAO Haibo, LIANG Junjie, LI Xiang. Modeling and analysis on demand response for generalized load of power supply systems in industrial parks [J]. Integrated Intelligent Energy, 2024, 46(1): 11-17. |
[14] | YU Haibin, GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi. Low-carbon economic scheduling of deep peak regulating market with the participation of wind power,thermal power,storage and carbon capture units considering demand response [J]. Integrated Intelligent Energy, 2023, 45(8): 80-89. |
[15] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||