Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (10): 56-66.doi: 10.3969/j.issn.2097-0706.2024.10.008
• Low-carbon Energy • Previous Articles Next Articles
WU Qi1,2, ZHAO Xuanming1,2, ZHANG Jiacheng1,2, QIU Zhifeng1,2,*(), WANG Yalin1,2
Received:
2024-04-30
Revised:
2024-08-25
Accepted:
2024-10-25
Published:
2024-10-25
Contact:
QIU Zhifeng
E-mail:zhifeng.qiu@csu.edu.cn
Supported by:
CLC Number:
WU Qi, ZHAO Xuanming, ZHANG Jiacheng, QIU Zhifeng, WANG Yalin. Study on low-carbon demand response considering electricity-carbon price coupling[J]. Integrated Intelligent Energy, 2024, 46(10): 56-66.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.10.008
Table 1
Basic parameters of units
机组 类型 | 机组编号 | 节点编号 | 出力上/ 下限/MW | 上/下爬坡速率/(MW·h-1) | 碳排放系数/ [t·(MW·h)-1] | 单次开机费用/元 | 单次停机费用/元 | 发电机组成本参数 | ||
---|---|---|---|---|---|---|---|---|---|---|
a/[元·(MW·h)-2] | b/[元·(MW·h)-1] | c/元 | ||||||||
火电 | 1 | 1 | 200/40 | 37 | 0.875 | 39 372 | 19 686 | 0.152 4 | 38.539 7 | 0 |
火电 | 2 | 2 | 100/10 | 30 | 0.525 | 25 000 | 12 500 | 0.105 8 | 46.159 1 | 0 |
火电 | 3 | 5 | 60/10 | 20 | 0.525 | 20 000 | 10 000 | 0.028 0 | 40.396 5 | 0 |
火电 | 4 | 8 | 80/10 | 15 | 0.875 | 15 000 | 7 500 | 0.035 4 | 38.305 5 | 0 |
光伏 | 5 | 11 | 50/0 | 15 | 10 000 | 5 000 | 0.021 1 | 36.327 8 | 0 | |
风电 | 6 | 13 | 120/0 | 15 | 10 000 | 5 000 | 0.017 9 | 38.270 4 | 0 |
[1] | 杨威, 龚学良, 曾智健, 等. 碳排放交易市场机制对电力市场的影响: 基于碳价需求响应的电力市场用户行为分析[J]. 南方电网技术, 2022, 16(8): 59-67. |
YANG Wei, GONG Xueliang, ZENG Zhijian, et al. Impacts of ETS mechanism on electricity market: Behavior analysis of market customers based on carbon-oriented demand response[J]. Southern Power System Technology, 2022, 16(8): 59-67. | |
[2] |
张妍, 冷媛, 尚楠, 等. 考虑碳排放需求响应及碳交易的电力系统双层优化调度[J]. 电力建设, 2024, 45(5): 94-104.
doi: 10.12204/j.issn.1000-7229.2024.05.010 |
ZHANG Yan, LENG Yuan, SHANG Nan, et al. Bi-level optimal scheduling of power system considering carbon demand response and carbon trading[J]. Electric Power Construction, 2024, 45(5): 94-104.
doi: 10.12204/j.issn.1000-7229.2024.05.010 |
|
[3] |
吴琪, 赵宣茗, 张佳诚, 等. 促进新能源消纳的电-碳市场耦合激励型出清机制[J]. 电力建设, 2023, 44(12): 14-27.
doi: 10.12204/j.issn.1000-7229.2023.12.002 |
WU Qi, ZHAO Xuanming, ZHANG Jiacheng, et al. Electricity-carbon market coupling incentive clearing mechanism to promote consumption of new energy[J]. Electric Power Construction, 2023, 44(12): 14-27.
doi: 10.12204/j.issn.1000-7229.2023.12.002 |
|
[4] | LI J M, AI Q, CHEN M Y. Strategic behavior modeling and energy management for electric-thermal-carbon-natural gas integrated energy system considering ancillary service[J]. Energy, 2023,278:127745. |
[5] | 傅质馨, 李紫嫣, 朱俊澎, 等. “双碳”目标下需求侧管理机制研究综述及展望[J]. 电力信息与通信技术, 2023, 21(2): 1-12. |
FU Zhixin, LI Ziyan, ZHU Junpeng, et al. Overview and prospect of demand side management mechanism under "dual carbon" goal[J]. Electric Power Information and Communication Technology, 2023, 21(2): 1-12. | |
[6] |
葛磊蛟, 于惟坤, 朱若源, 等. 考虑改进阶梯式碳交易机制与需求响应的综合能源系统优化调度[J]. 综合智慧能源, 2023, 45(7): 97-106.
doi: 10.3969/j.issn.2097-0706.2023.07.011 |
GE Leijiao, YU Weikun, ZHU Ruoyuan, et al. Integrated energy system optimization scheduling considering improved stepped carbon trading mechanism and demand responses[J]. Integrated Intelligent Energy, 2023, 45(7): 97-106.
doi: 10.3969/j.issn.2097-0706.2023.07.011 |
|
[7] | 王金浩, 樊瑞, 肖萤, 等. 基于低碳需求响应的新型电力系统中源-网-荷-储协调的优化调度[J]. 太原理工大学学报, 2024, 55(1): 46-56. |
WANG Jinhao, FAN Rui, XIAO Ying, et al. Optimal dispatch of coordinated source-grid-load-storage in new power system based on low-carbon demand response[J]. Journal of Taiyuan University of Technology, 2024, 55(1): 46-56. | |
[8] | LI C Y, YAN Z C, YAO Y M, et al. Coordinated low-carbon dispatching on source-demand side for integrated electricity-gas system based on integrated demand response exchange[J]. IEEE Transactions on Power Systems, 2024, 39(1):1287-1303. |
[9] | 陈厚合, 茅文玲, 张儒峰, 等. 基于碳排放流理论的电力系统源-荷协调低碳优化调度[J]. 电力系统保护与控制, 2021, 49(10): 1-11. |
CHEN Houhe, MAO Wenling, ZHANG Rufeng, et al. Low-carbon optimal scheduling of a power system source-load considering coordination based on carbon emission flow theory[J]. Power System Protection and Control, 2021, 49(10): 1-11. | |
[10] |
杨毅, 易文飞, 王晨清, 等. 基于碳流追踪的电力系统源网荷低碳经济调度[J]. 电力建设, 2023, 44(5): 108-119.
doi: 10.12204/j.issn.1000-7229.2023.05.011 |
YANG Yi, YI Wenfei, WANG Chenqing, et al. Low-carbon and economic optimal scheduling of power system source-grid-load based on carbon flow tracing method[J]. Electric Power Construction, 2023, 44(5): 108-119.
doi: 10.12204/j.issn.1000-7229.2023.05.011 |
|
[11] | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2842. |
LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42(8): 2830-2842. | |
[12] | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56(3): 162-172. |
CHEN Jiaxing, WANG Chunling, LIU Chunming. Dynamic low-carbon dispatching method of power system based on improved carbon emission flow theory[J]. Electric Power, 2023, 56(3): 162-172. | |
[13] | 梁宁, 方茜, 徐慧慧, 等. 基于节点碳势需求响应的电力系统双层优化调度[J]. 电力系统自动化, 2024, 48(9): 44-53. |
LIANG Ning, FANG Qian, XU Huihui, et al. Bi-level optimal dispatching of power system based on demand response considering nodal carbon intensity[J]. Automation of Electric Power Systems, 2024, 48(9): 44-53. | |
[14] | 孙志媛, 孙艳, 刘默斯, 等. 考虑碳流需求响应的电力系统低碳运行策略[J]. 中国电力, 2023, 56(11): 95-103. |
SUN Zhiyuan, SUN Yan, LIU Mosi, et al. Low-carbon operation strategy of power system considering carbon flow demand response[J]. Electric Power, 2023, 56(11): 95-103. | |
[15] |
靳冰洁, 李家兴, 彭虹桥, 等. 需求响应下计及电碳市场耦合的多元主体成本效益分析[J]. 电力建设, 2023, 44(2): 50-60.
doi: 10.12204/j.issn.1000-7229.2023.02.005 |
JIN Bingjie, LI Jiaxing, PENG Hongqiao, et al. Cost-benefit analysis of multiple entities under the coupling of electricity and carbon trading market considering demand response[J]. Electric Power Construction, 2023, 44(2): 50-60.
doi: 10.12204/j.issn.1000-7229.2023.02.005 |
|
[16] | 翁格平, 任娇蓉, 姚艳, 等. 考虑时变电碳因子的园区综合能源系统低碳经济调度[J]. 浙江电力, 2022, 41(10): 106-114. |
WENG Geping, REN Jiaorong, YAO Yan, et al. Low-carbon economic dispatch of industrial park integrated energy system considering time-varying carbon emission factor[J]. Zhejiang Electric Power, 2022, 41(10): 106-114. | |
[17] | 霍现旭, 陈天恒, 魏立勇, 等. 基于低碳经济优化调度的电-碳联合需求响应改进策略研究[J]. 电力系统及其自动化学报, 2024, 36(5): 99-104, 113. |
HUO Xianxu, CHEN Tianheng, WEI Liyong, et al. Improved strategy for electricity-carbon joint demand response based on optimal dispatching of low-carbon economy[J]. Proceedings of the CSU-EPSA, 2024, 36(5): 99-104, 113. | |
[18] | 李伊竹林, 韩肖清, 李廷钧, 等. 基于动态电-碳需求响应的综合能源系统日前多元低碳交易方法[J]. 电力系统自动化, 2024, 48(12): 24-35. |
LI Yizhulin, HAN Xiaoqing, LI Tingjun, et al. Multifaceted day-ahead low-carbon trading method for integrated energy systems based on dynamic electricity-carbon demand response[J]. Automation of Electric Power Systems, 2024, 48(12): 24-35. | |
[19] | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流分析理论初探[J]. 电力系统自动化, 2012, 36(7): 38-43, 85. |
ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary theoretical investigation on power system carbon emission flow[J]. Automation of Electric Power Systems, 2012, 36(7): 38-43, 85. | |
[20] |
闫丽梅, 胡汶硕. 基于复功率分布矩阵的电力系统碳流追踪方法[J]. 综合智慧能源, 2023, 45(8): 1-10.
doi: 10.3969/j.issn.2097-0706.2023.08.001 |
YAN Limei, HU Wenshuo. Carbon flow tracking method of power systems based on the complex power distribution matrix[J]. Integrated Intelligent Energy, 2023, 45(8): 1-10.
doi: 10.3969/j.issn.2097-0706.2023.08.001 |
|
[21] | 汪超群, 陈懿, 迟长云, 等. 基于潮流分布矩阵的电力系统碳排放流计算方法[J]. 科学技术与工程, 2022, 22(12): 4835-4842. |
WANG Chaoqun, CHEN Yi, CHI Changyun, et al. Calculation method of power system carbon emission flow based on power flow distribution matrix[J]. Science Technology and Engineering, 2022, 22(12): 4835-4842. | |
[22] | 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036-3046. |
HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036-3046. | |
[23] | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2842. |
LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42(8): 2830-2842. | |
[24] | 袁家海, 张为荣, 沈啟霞, 等. 煤电完全市场化后的电碳市场耦合问题研究[J]. 中国国情国力, 2021(12): 12-20. |
YUAN Jiahai, ZHANG Weirong, SHEN Qixia, et al. Study on the coupling problem of electricity and carbon market after the complete marketization of coal and electricity[J]. China National Conditions and Strength, 2021(12): 12-20. |
[1] | WANG Xiaoyan, WU Shuquan. Research on capacity allocation for source-grid-load-storage systems based on improved PSO [J]. Integrated Intelligent Energy, 2024, 46(9): 28-36. |
[2] | FAN Yanbo, XIONG Yaxuan, LI Xiang, TIAN Xi, YANG Yang. Advancement in multi-objective optimization for building energy use based on genetic algorithms [J]. Integrated Intelligent Energy, 2024, 46(9): 69-85. |
[3] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[4] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[7] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[10] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[11] | BAI Zhang, HAO Wenjie, LI Qi, HAO hongliang, WEN Caifeng, GUO Su, HUANG Xiankun. Capacity configuration optimization of wind‒solar hydrogen production based on life cycle assessment [J]. Integrated Intelligent Energy, 2024, 46(10): 1-11. |
[12] | LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads [J]. Integrated Intelligent Energy, 2024, 46(10): 12-17. |
[13] | SHEN Mingzhong, Hu Xiaofu, SHEN Jianyong, HOU Pengfei. Analysis and research on carbon emission reduction from co-firing green ammonia in coal-fired power plants [J]. Integrated Intelligent Energy, 2024, 46(10): 67-72. |
[14] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[15] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||