Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (10): 1-11.doi: 10.3969/j.issn.2097-0706.2024.10.001
• New Energy System Optimization • Next Articles
BAI Zhang1(), HAO Wenjie1, LI Qi1, HAO hongliang2, WEN Caifeng3, GUO Su4, HUANG Xiankun1
Received:
2024-04-08
Revised:
2024-07-05
Accepted:
2024-10-25
Published:
2024-10-25
Supported by:
CLC Number:
BAI Zhang, HAO Wenjie, LI Qi, HAO hongliang, WEN Caifeng, GUO Su, HUANG Xiankun. Capacity configuration optimization of wind‒solar hydrogen production based on life cycle assessment[J]. Integrated Intelligent Energy, 2024, 46(10): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.10.001
Table 2
Main equipment parameters of the system in the simulation case
设备 | 参数 | 数值 |
---|---|---|
风力发电设备 | 单机额定功率/kW | 2 000 |
切入风速/(m·s-1) | 3 | |
额定风速/(m·s-1) | 11 | |
切出风速/(m·s-1) | 22 | |
轮毂中心高度/m | 80 | |
光伏发电设备 | 单板额定功率/W | 340 |
峰值电压/V | 34.2 | |
峰值电流/A | 9.96 | |
开路电压/V | 41.7 | |
短路电流/A | 10.55 | |
碱性电解槽 | 单台额定功率/kW | 5 000 |
单台额定制氢量/(m3·h-1) | 1 000 | |
制氢功率范围 | 15%~100% | |
制氢纯度/% | 99.6 | |
蓄电池 | SOC范围 | 0.15~0.85 |
充电及放电效率/% | 98 | |
储氢罐 | 压力范围/MPa | 0.2~5.0 |
工作温度/℃ | 25 |
[1] |
李菁, 窦真兰, 王加祥, 等. 基于RSOC的风光氢能源系统功率分配策略研究[J]. 综合智慧能源, 2023, 45(7): 78-86.
doi: 10.3969/j.issn.2097-0706.2023.07.009 |
LI Jing, DOU Zhenlan, WANG Jiaxiang, et al. Research on power distribution strategy of an RSOC-based wind-photovoltaic-hydrogen energy system[J]. Integrated Intelligent Energy, 2023, 45(7):78-86.
doi: 10.3969/j.issn.2097-0706.2023.07.009 |
|
[2] | WANG F, HARINDINTWALI J D, YUAN Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2021, 2(4):100180. |
[3] | MOHAMED N, MEGAHED TAMER F, SHINICHI O, et al. Techno-economic assessment of clean hydrogen production and storage using hybrid renewable energy system of PV/Wind under different climatic conditions[J]. Sustainable Energy Technologies and Assessments, 2022, 52:102195. |
[4] |
钱宇, 陈耀熙, 史晓斐, 等. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110, 2290.
doi: 10.11949/0438-1157.20211782 |
QIAN Yu, CHEN Yaoxi, SHI Xiaofei, et al. Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system[J]. CIESC Journal, 2022, 73(5): 2101-2110, 2290. | |
[5] | HE Y, GUO S, ZHOU J X, et al. The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies[J]. Energy Conversion and Management, 2021, 229: 113779. |
[6] | ZHANG Y, SUN H X, TAN J X, et al. Capacity configuration optimization of multi-energy system integrating wind turbine/photovoltaic/hydrogen/battery[J]. Energy, 2022, 252: 124046. |
[7] | SUNDEEP S, PRASHANTH G K, PRAFUL N, et al. Optimal placement of hybrid wind-solar system using deep learning model[J]. International Journal of Photoenergy, 2022, 2022: 2881630. |
[8] | LONG P V, NGUYEN D V, RICCARDO F, et al. New models for feasibility assessment and electrolyser optimal sizing of hydrogen production from dedicated wind farms and solar photovoltaic farms, and case studies for Scotland and Vietnam[J]. Energy Conversion and Management, 2023, 295: 117597. |
[9] | MATHIEU D, JACO Q, JAN M, et al. Assessing the environmental impacts of wind-based hydrogen production in the Netherlands using ex-ante LCA and scenarios analysis[J]. Journal of Cleaner Production, 2021, 299: 126866. |
[10] | XIE W, LI X. Low-carbon economic operation of IES based on life cycle method and hydrogen energy utilization[J]. Frontiers in Energy Research, 2023, 11: 1177595. |
[11] | FARBOD E, SOLTANI M, JATIN N, et al. Design, analysis, and optimization of a novel poly-generation system powered by solar and wind energy[J]. Desalination, 2022, 543: 116119. |
[12] | 苏建徽, 余世杰, 赵为, 等. 硅太阳电池工程用数学模型[J]. 太阳能学报, 2001, 22(4): 409-412. |
SU Jianhui, YU Shijie, ZHAO Wei, et al. Investigation on engineering analytical model of silicon solar cells[J]. Acta Energiae Solaris Sinica, 2001, 22(4): 409-412. | |
[13] | ULLEBERG Ø. Modeling of advanced alkaline electrolyzers:A system simulation approach[J]. International Journal of Hydrogen Energy, 2003, 28(1): 21-33. |
[14] | IBÁÑEZ-RIOJA A, JÄRVINEN L, PURANEN P, et al. Off-grid solar PV-wind power-battery-water electrolyzer plant: Simultaneous optimization of component capacities and system control[J]. Applied Energy, 2023,345:121277. |
[15] | FANG R M. Life cycle cost assessment of wind power-hydrogen coupled integrated energy system[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29399-29408. |
[16] | AKHTAR M S, KHAN H, LIU J, et al. Green hydrogen and sustainable development—A social LCA perspective highlighting social hotspots and geopolitical implications of the future hydrogen economy[J]. Journal of Cleaner Production, 2023, 395: 136438. |
[17] | DOWLING J A, RINALDI K Z, RUGGLES T H, et al. Role of long-duration energy storage in variable renewable electricity systems[J]. Joule, 2020, 4(9): 1907-1928. |
[18] | ANISA E, ASMAE B, AMEUR A, et al. Improved techno-economic optimization of an off-grid hybrid solar/wind/gravity energy storage system based on performance indicators[J]. Journal of Energy Storage, 2022,49: 104163. |
[19] | MOHAMED N, HAMDY H. Techno-enviro-economic analysis of hydrogen production via low and high temperature electrolyzers powered by PV/Wind turbines/waste heat[J]. Energy Conversion and Management, 2023, 278: 116693. |
[20] | 戢时雨, 高超, 陈彬, 等. 基于生命周期的风电场碳排放核算[J]. 生态学报, 2016, 36(4): 915-923. |
JI Shiyu, GAO Chao, CHEN Bin, et al. Carbon emission accounting for wind farm based on life cycle assessment[J]. Acta Ecologica Sinica, 2016, 36(4): 915-923. | |
[21] | LI J Y, LI S S, WU F. Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory[J]. Renewable Energy, 2020,155: 456-468. |
[22] | KOJ J, WULF C, SCHREIBER A, et al. Site-dependent environmental impacts of industrial hydrogen production by alkaline water electrolysis[J]. Energies, 2017, 10(7):860. |
[23] | CHRISTINA W, MARTIN K. Hydrogen supply chains for mobility—Environmental and economic assessment[J]. Sustainability, 2018, 10(6): 1699. |
[24] | LIANG Y H, SU J, XI B, et al. Life cycle assessment of lithium-ion batteries for greenhouse gas emissions[J]. Resources, Conservation and Recycling, 2017, 117: 285-293. |
[25] |
刘忠, 张乐, 寇攀高, 等. 并网型风电-光伏-抽水蓄能-蓄电池系统容量优化配置[J]. 动力工程学报, 2023, 43(9): 1151-1159.
doi: 10.19805/j.cnki.jcspe.2023.09.007 |
LIU Zhong, ZHANG Le, KOU Pangao, et al. Capacity allocation optimization on grid connected system consisting of wind power, photovoltaic power, pumped storage and battery[J]. Journal of Chinese Society of Power Engineering, 2023, 43(9): 1151-1159.
doi: 10.19805/j.cnki.jcspe.2023.09.007 |
|
[26] | MORI M, JENSTERLE M, MRŽLJAK T, et al. Life-cycle assessment of a hydrogen-based uninterruptible power supply system using renewable energy[J]. The International Journal of Life Cycle Assessment, 2014, 19(11): 1810-1822. |
[27] | BENITEZ A, WULF C, DE PALMENAER A, et al. Ecological assessment of fuel cell electric vehicles with special focus on type IV carbon fiber hydrogen tank[J]. Journal of Cleaner Production, 2021, 278: 123277. |
[28] | 王彦哲, 欧训民, 周胜. 基于学习曲线的中国未来制氢成本趋势研究[J]. 气候变化研究进展, 2022, 18(3): 283-293. |
WANG Yanzhe, OU Xunmin, ZHOU Sheng. Future cost trend of hydrogen production in China based on learning curve[J]. Climate Change Research, 2022, 18(3): 283-293. | |
[29] | HEMANT S, GUILLAUME M, ÉLISE M, et al. Sizing a hybrid hydrogen production plant including life cycle assessment indicators by combining NSGA-Ⅲ and principal component analysis(PCA)[J]. Energy Conversion and Management: X, 2023,18:100361. |
[30] |
李云, 周世杰, 胡哲千, 等. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4):1-9.
doi: 10.3969/j.issn.2097-0706.2024.04.001 |
LI Yun, ZHOU Shijie, HU Zheqian, et al. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA[J]. Integrated Intelligent Energy, 2024, 46(4): 1-9.
doi: 10.3969/j.issn.2097-0706.2024.04.001 |
[1] | WANG Xiaoyan, WU Shuquan. Research on capacity allocation for source-grid-load-storage systems based on improved PSO [J]. Integrated Intelligent Energy, 2024, 46(9): 28-36. |
[2] | ZHAO Dazhou, XIE Yurong, ZHANG Zhongping, DENG Ruifeng, LIU Lili. Design and economic analysis of the molten salt heat storage system for a 300 MW coal-fired heating unit [J]. Integrated Intelligent Energy, 2024, 46(9): 45-52. |
[3] | FAN Yanbo, XIONG Yaxuan, LI Xiang, TIAN Xi, YANG Yang. Advancement in multi-objective optimization for building energy use based on genetic algorithms [J]. Integrated Intelligent Energy, 2024, 46(9): 69-85. |
[4] | PENG Leyao, MA Gang, CHEN Yonghua, YAN Yunsong, LAI Yening, LI Zhukun, LIU Dongyang, TANG Jing. Multi-stage robust optimization operation of microgrids considering carbon trading systems [J]. Integrated Intelligent Energy, 2024, 46(9): 9-19. |
[5] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[6] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[7] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[8] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[9] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[10] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[11] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[12] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[13] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[14] | WU Qi, ZHAO Xuanming, ZHANG Jiacheng, QIU Zhifeng, WANG Yalin. Study on low-carbon demand response considering electricity-carbon price coupling [J]. Integrated Intelligent Energy, 2024, 46(10): 56-66. |
[15] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||