Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (10): 67-72.doi: 10.3969/j.issn.2097-0706.2024.10.009
• Low-carbon Energy • Previous Articles Next Articles
SHEN Mingzhong1(), Hu Xiaofu2,*(
), SHEN Jianyong2, HOU Pengfei2(
)
Received:
2024-07-25
Revised:
2024-08-28
Accepted:
2024-10-25
Published:
2024-10-25
Contact:
Hu Xiaofu
E-mail:mingzhong-shen@chd.com.cn;huxf@hhi.com.cn;houpf@hhi.com.cn
CLC Number:
SHEN Mingzhong, Hu Xiaofu, SHEN Jianyong, HOU Pengfei. Analysis and research on carbon emission reduction from co-firing green ammonia in coal-fired power plants[J]. Integrated Intelligent Energy, 2024, 46(10): 67-72.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.10.009
[1] | 孙晓霞, 桂中华, 张新敬, 等. 压缩空气储能与可再生能源耦合研究进展[J]. 中国电机工程学报, 2023, 43(23):9224-9242. |
SUN Xiaoxia, GUI Zhonghua, ZHANG Xinjing, et al. Research progress on compressed air energy storage coupled with renewable energy[J]. Proceedings of the CSEE, 2023, 43(23):9224-9242. | |
[2] | 林云涛. 中国绿氢产业规模化发展的挑战、实践与方向[J]. 中外能源, 2023, 28(7):15-20. |
LIN Yuntao. Challenges,practices and directions for scale development of China's green hydrogen industry[J]. Sino-Global Energy, 2023, 28(7):15-20. | |
[3] | 滕霖, 林崴, 尹鹏博, 等. 碳中和目标下绿氨终端站储运技术发展现状及趋势[J]. 油气储运, 2024, 43(1):1-11. |
TENG Lin, LIN Wei, YIN Pengbo, et al. Development status and trends of green ammonia terminal storage and transportation technologies for achieving carbon neutrality[J]. Oil & Gas Storage and Transportation, 2024, 43(1): 1-11. | |
[4] |
李育磊, 刘玮, 董斌琦, 等. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9):2891-2899.
doi: 10.19799/j.cnki.2095-4239.2022.0324 |
LI Yulei, LIU Wei, DONG Binqi, et al. Green hydrogen ammonia synthesis in China under double carbon target: Research on development basis and route[J]. Energy Storage Science and Technology, 2022, 11(9):2891-2899.
doi: 10.19799/j.cnki.2095-4239.2022.0324 |
|
[5] | NICHOLAS S, RENÉ B A, RICHARD N L. Optimization of green ammonia distribution systems for intercontinental energy transport[J]. Science, 2021, 24(8):102903. |
[6] | 滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展[J]. 油气储运, 2022, 41(10):1115-1129. |
TENG Lin, YIN Pengbo, NIE Chaofei, et al. Research progress on "ammonia-hydrogen" green energy roadmap and storage & transportation technology of liquid ammonia[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1115-1129. | |
[7] | 清华大学气候变化与可持续发展研究院. 中国长期低碳发展战略与转型路径研究:综合报告[M]. 北京: 中国环境出版集团, 2021. |
[8] | 谭厚章, 周上坤, 杨文俊, 等. 氨燃料经济性分析及煤氨混燃研究进展[J]. 中国电机工程学报, 2023, 43(1): 181-191. |
TAN Houzhang, ZHOU Shangkun, YANG Wenjun, et al. Economic analysis of ammonia and research progress of coal-ammonia cofiring[J]. Proceedings of the CSEE, 2023, 43(1):181-191. | |
[9] | 高正平, 涂安琪, 李天新, 等. 面向零碳电力的氨燃烧技术研究进展[J]. 洁净煤技术, 2022, 28(3):173-184. |
GAO Zhengping, TU Anqi, LI Tianxin, et al. Recent advances on ammonia combustion technology for zero-carbon power[J]. Clean Coal Technology, 2022, 28(3):173-184. | |
[10] | 王华坤, 徐义书, 张保华, 等. 煤掺氨燃烧过程中NO生成特性和氨氮转化行为研究[J]. 能源环境保护, 2023, 37(4):30-37. |
WANG Huakun, XU Yishu, ZHANG Baohua, et al. Study on NO formation characteristics and ammonia-nitrogen conversion behavior during ammonia-coal co-firing[J]. Energy Environmental Protection, 2023, 37(4):30-37. | |
[11] | GENICHIRO N. Development of co-firing method of pulverized coal and ammonia to reduce greenhouse gas emissions[J]. IHI Engineering Review, 2020, 53(1): 1-10. |
[12] |
赖诗妮, 江丽霞, 李军, 等. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9):4603-4615.
doi: 10.16085/j.issn.1000-6613.2022-2005 |
LAI Shini, JIANG Lixia, LI Jun, et al. Research progress of ammonia blended fossil fuel[J]. Chemical Industry and Engineering Progress, 2023, 42(9):4603-4615.
doi: 10.16085/j.issn.1000-6613.2022-2005 |
|
[13] | 林今, 余志鹏, 张信真, 等. 可再生能源电制氢合成氨系统的并/离网运行方式与经济性分析[J]. 中国电机工程学报, 2024, 44(1):117-127. |
LIN Jin, YU Zhipeng, ZHANG Xinzhen, et al. On-grid/off-grid operation mode and economic analysis of renewable power to ammonia system[J]. Proceedings of the CSEE, 2024, 44(1):117-127. | |
[14] | 郑植, 沈骏, 刘雪松, 等. 固体燃料低碳燃烧技术研究进展[J/OL]. 低碳化学与化工, 2024:1-11(2024-05-27)[2024-07-22]. http://kns.cnki.net/kcms/detail/51.1807.tq.20240523.1633.004.html. |
ZHENG Zhi, SHEN Jun, LIU Xuesong, et al, Research progress of solid fuel low-carbon combustion technologies[J]. Low-Carbon Chemistry and Chemical Engineering, 2024:1-11(2024-05-27)[2024-07-22]. http://kns.cnki.net/kcms/detail/51.1807.tq.20240523.1633.004.html. | |
[15] | LYU Q, WANG R R, DU Y B, et al. Numerical study on coal/ammonia cofiring in a 600 MW utility boiler[J]. International Journal of Hydrogen Energy, 2023, 48(45):17293-17310. |
[16] | 谭厚章, 王学斌, 杨富鑫, 等. 大型燃煤发电机组低碳技术进展[J]. 煤炭学报, 2024, 49(2):1052-1066. |
TAN Houzhang, WANG Xuebin, YANG Fuxin, et al. Progress in low carbon technologies for large-scale coal-fired power plants[J]. Journal of China Coal Society, 2024, 49(2):1052-1066. | |
[17] | TAMURA M, GOTOU T, ISHII H, et al. Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace[J]. Applied Energy, 2020,277. |
[18] | ARORA P, SHARMA I, HOADLEY A, et al. Remote,small-scale,"greener" routes of ammonia production[J]. Journal of Cleaner Production, 2018,199:177-192. |
[19] | 丁先, 李汪繁, 马达夫. 燃煤机组耦合氨燃料燃烧特性及经济性探讨[J]. 热力发电, 2022, 51(8):20-28. |
DING Xian, LI Wangfan, MA Dafu. Discussion on coal-fired units coupled with ammonia fuel:Combustion characteristics and economy[J]. Thermal Power Generation, 2022, 51(8):20-28. | |
[20] | 邹鹏, 王晓娜, 王光礼, 等. 燃煤锅炉混氨燃烧技术研究进展[J]. 节能, 2024, 43(6):113-116. |
ZOU Peng, WANG Xiaona, WANG Guangli, et al. Research progress of mixed ammonia combustion technology for coal-fired boilers[J]. Energy Conservation, 2024, 43(6):113-116. | |
[21] | 王一坤, 邓磊, 王涛, 等. 大比例掺烧NH3对燃煤机组影响分析[J]. 洁净煤技术, 2022, 28(3):185-192. |
WANG Yikun, DENG Lei, WANG Tao, et al. Influence of large scale coupled NH3 power generation on coal-fired units[J]. Clean Coal Technology, 2022, 28(3):185-192. | |
[22] | 王妍艳, 陆骏超, 赵冬建. 燃煤电厂CO2排放的核算与管理分析[J]. 电力与能源, 2024, 45(1):102-106. |
WANG Yanyan, LU Junchao, ZHAO Dongjian. Accounting and management analysis of CO2 emissions from coal-fired power plants[J]. Power & Energy, 2024, 45(1):102-106. | |
[23] | 张彦军, 谢志成, 董强, 等. 替代燃料应用于燃煤发电厂的碳排放研究[J]. 能源与环境, 2024(2):70-72,88. |
ZHANG Yanjun, XIE Zhicheng, DONG Qiang, et al. Study on carbon emission of alternative fuels applied to coal-fired power plants[J]. Energy and Environment, 2024(2):70-72,88. | |
[24] | 赵悦, 李小姗, 张立麒, 等. 适用于生物质直接耦合煤发电过程的温室气体核算方法优化[J]. 洁净煤技术, 2024, 30(8):58-65. |
ZHAO Yue, LI Xiaoshan, ZHANG Liqi, et al. Optimization of greenhouse gas accounting methods applicable to biomass direct-coupled coal power generation processes[J]. Clean Coal Technology, 2024, 30(8):58-65. | |
[25] |
胡长征, 王雅博, 刘圣春. MEA溶液在生物质电厂和燃煤电厂捕集CO2中的应用对比[J]. 综合智慧能源, 2022, 44(6):78-85.
doi: 10.3969/j.issn.2097-0706.2022.06.009 |
HU Changzheng, WANG Yabo, LIU Shengchun. Application of MEA solution in the CO2 capture in biomass power plants and coal-fired power plants[J]. Integrated Intelligent Energy, 2022, 44(6):78-85.
doi: 10.3969/j.issn.2097-0706.2022.06.009 |
|
[26] | 尚楠, 陈政, 卢治霖, 等. 电力市场、碳市场及绿证市场互动机理及协调机制[J]. 电网技术, 2023, 47(1): 142-154. |
SHANG Nan, CHEN Zheng, LU Zhilin, et al. Interaction principle and cohesive mechanism between electricity market, carbon market and green power certificate market[J]. Power System Technology, 2023, 47(1):142-154. | |
[27] | 胡杰, 那广宇, 刘奭昕. 中美碳排放与经济发展、电力消费相互关系分析[J]. 东北电力技术, 2022, 43(9):56-59. |
HU Jie, NA Guangyu, LIU Shixin. Analysis of interrelation among carbon emissions,economic development and electricity consumption in China and the United States[J]. Northeast Electric Power Technology, 2022, 43(9):56-59. | |
[28] |
王家豪, 马恒瑞, 王波, 等. 面向综合能源系统的辅助服务市场与多类型市场耦合关系分析[J]. 综合智慧能源, 2023, 45(10):82-92.
doi: 10.3969/j.issn.2097-0706.2023.10.010 |
WANG Jiahao, MA Hengrui, WANG Bo, et al. Analysis on the coupling between the auxiliary service market and multiple types of markets for integrated energy systems[J]. Integrated Intelligent Energy, 2023, 45(10):82-92.
doi: 10.3969/j.issn.2097-0706.2023.10.010 |
[1] | WANG Xiaoyan, WU Shuquan. Research on capacity allocation for source-grid-load-storage systems based on improved PSO [J]. Integrated Intelligent Energy, 2024, 46(9): 28-36. |
[2] | FAN Yanbo, XIONG Yaxuan, LI Xiang, TIAN Xi, YANG Yang. Advancement in multi-objective optimization for building energy use based on genetic algorithms [J]. Integrated Intelligent Energy, 2024, 46(9): 69-85. |
[3] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[4] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[7] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[10] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[11] | BAI Zhang, HAO Wenjie, LI Qi, HAO hongliang, WEN Caifeng, GUO Su, HUANG Xiankun. Capacity configuration optimization of wind‒solar hydrogen production based on life cycle assessment [J]. Integrated Intelligent Energy, 2024, 46(10): 1-11. |
[12] | LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads [J]. Integrated Intelligent Energy, 2024, 46(10): 12-17. |
[13] | WU Qi, ZHAO Xuanming, ZHANG Jiacheng, QIU Zhifeng, WANG Yalin. Study on low-carbon demand response considering electricity-carbon price coupling [J]. Integrated Intelligent Energy, 2024, 46(10): 56-66. |
[14] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[15] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||