Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (10): 18-25.doi: 10.3969/j.issn.2097-0706.2024.10.003
• New Energy System Optimization • Previous Articles Next Articles
JIANG Jian1(), XU Fengliang1, LI Xiaoming1, SUN Jianchao1, JIANG Huahua1, ZHANG Jiaxin2, MA Siyuan2, YANG Zishuai2,*(
)
Received:
2024-04-22
Revised:
2024-09-06
Accepted:
2024-10-25
Published:
2024-10-25
Contact:
YANG Zishuai
E-mail:332617175@qq.com;18582407350@163.com
Supported by:
CLC Number:
JIANG Jian, XU Fengliang, LI Xiaoming, SUN Jianchao, JIANG Huahua, ZHANG Jiaxin, MA Siyuan, YANG Zishuai. Load frequency control of renewable energy power systems considering demand response of air conditioning clusters based on fractional-order integral sliding mode[J]. Integrated Intelligent Energy, 2024, 46(10): 18-25.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.10.003
Table 1
Parameters of renewable energy power systems
参数 | 数值 | 参数 | 数值 | 参数 | 数值 |
---|---|---|---|---|---|
Kpi/s | 120 | Tpi | 15 | r | 0.49 |
Tch1/s | 0.072 8 | Tg1/s | 0.273 | Kε1 | 0.3 |
Tch2/s | 0.072 8 | Tg2/s | 0.273 | Kε2 | 0.25 |
B1 | 0.425 | B2 | 0.347 | Ttie‑ij | 0.8 |
Ar | 14 | J/(kg·m²) | 62 993 | ρ/(kg·m-³) | 1.225 |
U/V | 230.94 | R1/Ω | 0.003 97 | R2/Ω | 0.004 43 |
X1/Ω | 0.003 76 | X2/Ω | 0.053 | Tβ /s | 0.2 |
H1 | 10 | H2 | 8 | D1 | 0.6 |
D2 | 0.8 |
[1] | 李国庆, 刘先超, 辛业春, 等. 含高比例新能源的电力系统频率稳定研究综述[J]. 高电压技术, 2024, 50(3):1165-1181. |
LI Guoqing, LIU Xianchao, XIN Yechun, et al. Research on frequency stability of power system with high penetration renewable energy: A review[J]. High Voltage Engineering, 2024, 50(3): 1165-1181. | |
[2] |
赵长伟, 王慧, 顾志成, 等. 分散式风储系统频率和电压调节能力评估关键技术[J]. 综合智慧能源, 2024, 46(6):78-87.
doi: 10.3969/j.issn.2097-0706.2024.06.009 |
ZHAO Changwei, WANG Hui, GU Zhicheng, et al. Key technologies of the evaluation on distributed wind-storage systems' frequency and voltage regulation capacities[J]. Integrated Intelligent Energy, 2024, 46(6): 78-87.
doi: 10.3969/j.issn.2097-0706.2024.06.009 |
|
[3] |
邹风华, 朱星阳, 殷俊平, 等. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40.
doi: 10.3969/j.issn.2097-0706.2024.08.005 |
ZOU Fenghua, ZHU Xingyang, YIN Junping, et al. Development trend analysis on building energy systems under "dual carbon" target[J]. Integrated Intelligent Energy, 2024, 46(8): 36-40.
doi: 10.3969/j.issn.2097-0706.2024.08.005 |
|
[4] | 衣立东, 蒙金有, 何川. 考虑系统一次频率响应特性的新型电力系统源网荷储协调鲁棒规划[J]. 电网技术, 2023, 47(9): 3659-3672. |
YI Lidong, MENG Jinyou, HE Chuan. Source-grid-load-storage robust coordinated planning of new‑type power system considering primary frequency response characteristics[J]. Power System Technology, 2023, 47(9): 3659-3672. | |
[5] | POURMOUSAVI S A, NEHRIR M H. Real‑time central demand response for primary frequency regulation in microgrids[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1988-1996. |
[6] | 王路平, 李浩志, 谢小荣. 提高短期频率稳定性的紧急需求响应分散协调控制方法[J]. 中国电机工程学报, 2020, 40(11): 3462-3470. |
WANG Luping, LI Haozhi, XIE Xiaorong. A decentralized and coordinated control of emergency demand response to improve short‑term frequency stability[J]. Proceedings of the CSEE, 2020, 40(11): 3462-3470. | |
[7] | TIAN G Y, SUN Q Z. A stochastic controller for primary frequency regulation using ON/OFF demand side resources[J]. IEEE Transactions on Smart Grid, 2023, 14(5): 4141-4144. |
[8] | MU C X, LIU W Q, XU W, et al. Observer‑based load frequency control for island microgrid with photovoltaic power[J]. International Journal of Photoenergy, 2017, 2017: 2851436. |
[9] | 米阳, 郝学智, 刘红业, 等. 基于滑模控制的含风储多域电力系统负荷频率控制[J]. 控制与决策, 2019, 34(2): 437-444. |
MI Yang, HAO Xuezhi, LIU Hongye, et al. Multi‑area power system with wind power and energy storage system load frequency control based on sliding model control[J]. Control and Decision, 2019, 34(2): 437-444. | |
[10] | 米阳, 徐怡雯, 时帅, 等. 新型时滞可再生电力系统集成模型的滑模负荷频率控制设计[J]. 中国电机工程学报, 2022, 42(11):3953-3963. |
MI Yang, XU Yiwen, SHI Shuai, et al. Sliding mode load frequency control design for the novel integrated model of time‑delay renewable power system[J]. Proceedings of the CSEE, 2022, 42(11):3953-3963. | |
[11] |
李朋真, 刘艳红, 吴振龙. 高比例可再生能源的多区域电力系统负荷频率自抗扰控制[J]. 综合智慧能源, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005 |
LI Pengzhen, LIU Yanhong, WU Zhenlong, et al. Active disturbance rejection control on load frequency of multi‑area power systems with high‑proportion renewable energy[J]. Integrated Intelligent Energy, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005 |
|
[12] |
方仍存, 桑子夏, 刘知行, 等. 基于改进协同量子粒子群算法的多微网负荷频率控制[J]. 电力建设, 2023, 44(7):87-97.
doi: 10.12204/j.issn.1000-7229.2023.07.010 |
FANG Rengcun, SANG Zixia, LIU Zhixing, et al. Load‑frequency control of multi‑microgrid systems based on improved cooperative quantum‑behaved particle swarm optimization[J]. Electric Power Construction, 2023, 44(7):87-97.
doi: 10.12204/j.issn.1000-7229.2023.07.010 |
|
[13] | KUMAR A, ANWAR M N, KUMAR S. Sliding mode controller design for frequency regulation in an interconnected power system[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 1-12. |
[14] | TRIP S, CUCUZZELLA M, DE PERSIS C, et al. Passivity‑based design of sliding modes for optimal load frequency control[J]. IEEE Transactions on Control Systems Technology, 2019, 27(5): 1893-1906. |
[15] | GUO J P. The load frequency control by adaptive high order sliding mode control strategy[J]. IEEE Access, 2022, 10: 25392-25399. |
[16] | LIAO K, XU Y. A robust load frequency control scheme for power systems based on second‑order sliding mode and extended disturbance observer[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3076-3086. |
[17] | YANG F, SHAO X Y, MUYEEN S M, et al. Disturbance observer based fractional‑order integral sliding mode frequency control strategy for interconnected power system[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5922-5932. |
[18] | 米阳, 潘达, 吴晓, 等. 基于等速趋近律的滑模负荷频率控制设计[J]. 控制工程, 2014, 21(3): 326-329. |
MI Yang, PAN Da, WU Xiao, et al. The research of sliding mode load frequency control strategy based on constant reaching law[J]. Control Engineering of China, 2014, 21(3): 326-329. | |
[19] | 蔡旭, 李征. 风电机组与风电场的动态建模[M]. 北京: 科学出版社, 2016: 86-127. |
[20] | CHANG-CHIEN L R, AN L N, LIN T W, et al. Incorporating demand response with spinning reserve to realize an adaptive frequency restoration plan for system contingencies[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1145-1153. |
[21] | MI Y, FU Y, WANG C S, et al. Decentralized sliding mode load frequency control for multi‑area power systems[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4301-4309. |
[22] | 王智伟, 李鹏瀚, 刘鑫, 等. 基于分数阶滑模控制的双馈风电系统次同步振荡抑制方法[J]. 中国电机工程学报, 2023, 43(19): 7519-7530. |
WANG Zhiwei, LI Penghan, LIU Xin, et al. Suppression method of subsynchronous oscillation in DFIG‑based wind power system based on fractional‑order sliding mode control[J]. Proceedings of the CSEE, 2023, 43(19):7519-7530. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads [J]. Integrated Intelligent Energy, 2024, 46(10): 12-17. |
[3] | WU Qi, ZHAO Xuanming, ZHANG Jiacheng, QIU Zhifeng, WANG Yalin. Study on low-carbon demand response considering electricity-carbon price coupling [J]. Integrated Intelligent Energy, 2024, 46(10): 56-66. |
[4] | BAO Haibo, LIANG Junjie, LI Xiang. Modeling and analysis on demand response for generalized load of power supply systems in industrial parks [J]. Integrated Intelligent Energy, 2024, 46(1): 11-17. |
[5] | YU Haibin, GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi. Low-carbon economic scheduling of deep peak regulating market with the participation of wind power,thermal power,storage and carbon capture units considering demand response [J]. Integrated Intelligent Energy, 2023, 45(8): 80-89. |
[6] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[7] | HU Ze, ZHU Ziqing, BU Siqi, CHAN Jiarong, WEI Xiang. Pricing strategy in district-level integrated energy market based on deep reinforcement learning [J]. Integrated Intelligent Energy, 2023, 45(7): 87-96. |
[8] | GE Leijiao, YU Weikun, ZHU Ruoyuan, WANG Guantao, BAI Xingzhen. Integrated energy system optimization scheduling considering improved stepped carbon trading mechanism and demand responses [J]. Integrated Intelligent Energy, 2023, 45(7): 97-106. |
[9] | XIONG Zhenzhen. Analysis on execution of VPPs for commercial buildings in Shanghai based on decision tree [J]. Integrated Intelligent Energy, 2023, 45(6): 66-72. |
[10] | MEI Wenqing, LIU Xiaofeng, WANG Jiacheng, TAN Mengling. A day-ahead market pricing model for load aggregators based on potential game [J]. Integrated Intelligent Energy, 2023, 45(11): 62-69. |
[11] | LI Bin, HU Chunjin, WANG Jing. Prediction method for adjustable load based on EEMD-BiLSTM [J]. Integrated Intelligent Energy, 2022, 44(9): 33-39. |
[12] | ZHONG Yongjie, JI Ling, LI Jingxia, JIANG Yanjun, WU Shiwei, WANG Zidong. Overview on the characteristics,connotation and development status of virtual power plants in China [J]. Integrated Intelligent Energy, 2022, 44(6): 25-36. |
[13] | JI Bin, SUN Hui, CHANG Li, ZHANG Dandan. Modeling and analysis on decision making behavior of loyal users participating in demand-side response [J]. Integrated Intelligent Energy, 2022, 44(2): 80-88. |
[14] | ZHAO Jianli, TANG Zhuofan, WANG Guilin, CHEN Yuyang, WANG Weidong, CHEN Ke, WU Yingjun. Operation characteristics of user-side resources with energy storage function [J]. Integrated Intelligent Energy, 2022, 44(2): 8-14. |
[15] | ZHANG Kaijie, DING Guofeng, WEN Ming, HUI Hongxun, DING Yi, HE Min, CHU Jiefeng, XIE Kang, YU Chutian, ZHANG Lijun. Review of optimal dispatching technology and market mechanism design for virtual power plants [J]. Integrated Intelligent Energy, 2022, 44(2): 60-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||