Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (12): 14-24.doi: 10.3969/j.issn.2097-0706.2025.12.002
• Energy Storage Technology • Previous Articles Next Articles
JIANG Zeling1(
), XIONG Yaxuan1,*(
), BAI Yinlei2, GENG Bochen1
Received:2025-03-07
Revised:2025-04-15
Published:2025-05-08
Contact:
XIONG Yaxuan
E-mail:876537897@qq.com;xiongyaxuan@bucea.edu.cn
Supported by:CLC Number:
JIANG Zeling, XIONG Yaxuan, BAI Yinlei, GENG Bochen. Research progress in molten nitrate salts for thermal energy storage[J]. Integrated Intelligent Energy, 2025, 47(12): 14-24.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.12.002
Table 1
Novel multicomponent molten nitrate salts and their thermophysical properties
| 新型硝酸熔盐 | 熔点/℃ | 分解温度/℃ | 比热容/[J·(g·K)-1] | 文献 |
|---|---|---|---|---|
| 355.40 | 440.00 | 1.023 | [ | |
| 65.00 | 215.00 | 2.729 | [ | |
| 80.00 | 600.00 | 1.500 | [ | |
| 77.50~94.37 | 612.00~639.11 | 1.860~1.950 | [ | |
| 130.20 | 650.00 | [ | ||
| 83.10 | 628.50 | 1.520 | [ | |
| 102.30 | 651.20 | 1.500 | [ |
| [1] | 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4): 529-540. |
| ZHENG Qiong, JIANG Lixia, XU Yujie, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 529-540. | |
| [2] | 毛翠骥, 余雄江, 徐进良, 等. 耦合熔融盐储热的火电机组灵活调峰系统关键技术研究进展[J]. 热力发电, 2023, 52(2): 10-22. |
| MAO Cuiji, YU Xiongjiang, XU Jinliang, et al. Research progress on key technologies of flexible peak shaving system of the hermal Power Generation, 2023, 52(2): 10-22. | |
| [3] |
姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771.
doi: 10.19799/j.cnki.2095-4239.2021.0538 |
|
JIANG Zhu, ZOU Boyang, CONG Lin, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771.
doi: 10.19799/j.cnki.2095-4239.2021.0538 |
|
| [4] |
PFLEGER N, BAUER T, MARTIN C, et al. Thermal energy storage—Overview and specific insight into nitrate salts for sensible and latent heat storage[J]. Beilstein Journal of Nanotechnology, 2015, 6: 1487-1497.
doi: 10.3762/bjnano.6.154 |
| [5] | 李锦丽. 高性能硝酸熔盐体系的构建与开发[D]. 兰州: 兰州大学, 2022. |
| LI Jinli. Construction and development of high-performance nitrate molten salt system[D]. Lanzhou: Lanzhou University, 2022. | |
| [6] | 葛志伟, 叶锋, LASFARGUES M, 等. 中高温储热材料的研究现状与展望[J]. 储能科学与技术, 2012, 1(2): 89-102. |
| GE Zhiwei, YE Feng, LASFARGUES M, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science and Technology, 2012, 1(2): 89-102. | |
| [7] |
ZHENG H B, SONG C, BAO C, et al. Dark calcium carbonate particles for simultaneous full-spectrum solar thermal conversion and large-capacity thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 207: 110364.
doi: 10.1016/j.solmat.2019.110364 |
| [8] |
张钟平, 刘亨, 谢玉荣, 等. 熔盐储热技术的应用现状与研究进展[J]. 综合智慧能源, 2023, 45(9): 40-47.
doi: 10.3969/j.issn.2097-0706.2023.09.006 |
|
ZHANG Zhongping, LIU Heng, XIE Yurong, et al. Application and research progress of molten salt heat storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 40-47.
doi: 10.3969/j.issn.2097-0706.2023.09.006 |
|
| [9] |
PATEL N S, PAVLÍK V, BOČA M. High-temperature corrosion behavior of superalloys in molten salts—A review[J]. Critical Reviews in Solid State and Materials Sciences, 2017, 42(1): 83-97.
doi: 10.1080/10408436.2016.1243090 |
| [10] | 宗国强, 肖吉昌. 氟化物熔盐的制备及其应用进展[J]. 化工进展, 2018, 37(7): 2455-2472. |
| ZONG Guoqiang, XIAO Jichang. Advances in the preparation and application of fluoride molten salts[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2455-2472. | |
| [11] | 孟凡星. 碳酸盐熔盐储热材料热物性模拟研究[D]. 北京: 华北电力大学, 2021. |
| MENG Fanxing. Simulation of the thermophysical properties of carbonate molten salts for thermal energy storage[D]. Beijing: North China Electric Power University, 2021. | |
| [12] |
SERRANO-LÓPEZ R, FRADERA J, CUESTA-LÓPEZ S. Molten salts database for energy applications[J]. Chemical Engineering and Processing: Process Intensification, 2013, 73: 87-102.
doi: 10.1016/j.cep.2013.07.008 |
| [13] |
BOEREMA N, MORRISON G, TAYLOR R, et al. Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems[J]. Solar Energy, 2012, 86(9): 2293-2305.
doi: 10.1016/j.solener.2012.05.001 |
| [14] |
刘亨, 于洋, 李明航, 等. 熔盐纳米流体比热容提升研究进展[J]. 综合智慧能源, 2024, 46(12): 45-54.
doi: 10.3969/j.issn.2097-0706.2024.12.006 |
|
LIU Heng, YU Yang, LI Minghang, et al. Research progress on specific heat capacity improvement of molten salt nanofluids[J]. Integrated Intelligent Energy, 2024, 46(12): 45-54.
doi: 10.3969/j.issn.2097-0706.2024.12.006 |
|
| [15] |
GASA G, LOPEZ-ROMAN A, PRIETO C, et al. Life cycle assessment (LCA) of a concentrating solar power (CSP) plant in tower configuration with and without thermal energy storage (TES)[J]. Sustainability, 2021, 13(7): 3672.
doi: 10.3390/su13073672 |
| [16] |
ROPER R, HARKEMA M, SABHARWALL P, et al. Molten salt for advanced energy applications: A review[J]. Annals of Nuclear Energy, 2022, 169:108924.
doi: 10.1016/j.anucene.2021.108924 |
| [17] |
BATUECAS E, MAYO C, DÍAZ R, et al. Life cycle assessment of heat transfer fluids in parabolic trough concentrating solar power technology[J]. Solar Energy Materials and Solar Cells, 2017, 171: 91-97.
doi: 10.1016/j.solmat.2017.06.032 |
| [18] |
VIGNAROOBAN K, XU X H, ARVAY A, et al. Heat transfer fluids for concentrating solar power systems—A review[J]. Applied Energy, 2015, 146: 383-396.
doi: 10.1016/j.apenergy.2015.01.125 |
| [19] |
ZHANG C C, LU Y W, SHI S L, et al. Comparative research of heat discharging characteristic of single tank molten salt thermal energy storage system[J]. International Journal of Thermal Sciences, 2021, 161: 106704.
doi: 10.1016/j.ijthermalsci.2020.106704 |
| [20] | 左芳菲, 韩伟, 姚明宇. 熔盐储能在新型电力系统中应用现状与发展趋势[J]. 热力发电, 2023, 52(2): 1-9. |
| ZUO Fangfei, HAN Wei, YAO Mingyu. Application status and development trend of molten salt energy storage in novel power systems[J]. Thermal Power Generation, 2023, 52(2): 1-9. | |
| [21] |
GIL A, MEDRANO M, MARTORELL I, et al. State of the art on high temperature thermal energy storage for power generation. Part 1: Concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55.
doi: 10.1016/j.rser.2009.07.035 |
| [22] |
ZHAO C Y, WU Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 636-643.
doi: 10.1016/j.solmat.2010.09.032 |
| [23] |
DUDDA B, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69: 37-42.
doi: 10.1016/j.ijthermalsci.2013.02.003 |
| [24] | BRADSHAW R W, DAWSON D B, DE LA ROSA W, et al. Final test and evaluation results from the solar two project[R]. Sandia: Sandia National Lab, 2002. |
| [25] |
TENG L, XUAN Y M, DA Y, et al. Modified Ca-looping materials for directly capturing solar energy and high-temperature storage[J]. Energy Storage Materials, 2020, 25: 836-845.
doi: 10.1016/j.ensm.2019.09.006 |
| [26] |
AHMAD N N B, YUNOS N B, MUHAMMAD W N A B W, et al. Effect of lithium nitrate and calcium nitrate composition on the thermal properties of quaternary molten salts mixture for heat transfer application[J]. Journal of Physics: Conference Series, 2017, 914: 012027.
doi: 10.1088/1742-6596/914/1/012027 |
| [27] |
NI H O, WU J, SUN Z, et al. Insight into the viscosity enhancement ability of Ca(NO3)2 on the binary molten nitrate salt: A molecular dynamics simulation study[J]. Chemical Engineering Journal, 2019, 377: 120029.
doi: 10.1016/j.cej.2018.09.190 |
| [28] |
XU P, GUO X Y, XIONG Y X, et al. The effect of added magnesium nitrate on the thermophysical property of sodium nitrate[J]. Energy Procedia, 2019, 158: 547-552.
doi: 10.1016/j.egypro.2019.01.150 |
| [29] |
VAKA M, WALVEKAR R, KHALID M, et al. Low-melting-temperature binary molten nitrate salt mixtures for solar energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(6): 2657-2664.
doi: 10.1007/s10973-020-09683-y |
| [30] |
CHEN Y Y, ZHAO C Y. Thermophysical properties of Ca(NO3)2-NaNO3-KNO3 mixtures for heat transfer and thermal storage[J]. Solar Energy, 2017, 146: 172-179.
doi: 10.1016/j.solener.2017.02.033 |
| [31] |
VILLADA C, JARAMILLO F, CASTAÑO J G, et al. Design and development of nitrate-nitrite based molten salts for concentrating solar power applications[J]. Solar Energy, 2019, 188: 291-299.
doi: 10.1016/j.solener.2019.06.010 |
| [32] | 王超, 任楠, 吴玉庭, 等. 新型低熔点混合熔盐的开发和热物性测定[J]. 太阳能学报, 2015, 36(11): 2605-2609. |
| WANG Chao, REN Nan, WU Yuting, et al. Exploitation and experimental study of new mixed molten salt with low melting point[J]. Acta Energiae Solaris Sinica, 2015, 36(11): 2605-2609. | |
| [33] |
ZOU L L, CHEN X, WU Y T, et al. Experimental study of thermophysical properties and thermal stability of quaternary nitrate molten salts for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 190: 12-19.
doi: 10.1016/j.solmat.2018.10.013 |
| [34] |
WANG Y Y, LU Y W, WANG Y Q, et al. Investigation on thermal performance of quinary nitrate/nitrite mixed molten salts with low melting point for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2024, 270: 112803.
doi: 10.1016/j.solmat.2024.112803 |
| [35] |
武延泽, 王敏, 李锦丽, 等. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1): 10-18.
doi: 10.11868/j.issn.1001-4381.2018.001380 |
|
WU Yanze, WANG Min, LI Jinli, et al. Research progress in improving heat transfer and heat storage performance of molten nitrate by nanomaterials[J]. Journal of Materials Engineering, 2020, 48(1): 10-18.
doi: 10.11868/j.issn.1001-4381.2018.001380 |
|
| [36] |
孟强, 杨洋, 熊亚选. 添加纳米SiO2熔盐传热储热稳定性能研究[J]. 综合智慧能源, 2023, 45(9): 32-39.
doi: 10.3969/j.issn.2097-0706.2023.09.005 |
|
MENG Qiang, YANG Yang, XIONG Yaxuan. Study on thermal stability of molten salt composites added with SiO2 nanoparticles[J]. Integrated Intelligent Energy, 2023, 45(9): 32-39.
doi: 10.3969/j.issn.2097-0706.2023.09.005 |
|
| [37] | CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials and Solar Cells, 2017, 167: 60-69. |
| [38] |
XIONG Y X, WANG Z Y, SUN M Y, et al. Enhanced thermal energy storage of nitrate salts by silica nanoparticles for concentrating solar power[J]. International Journal of Energy Research, 2021, 45(4): 5248-5262.
doi: 10.1002/er.v45.4 |
| [39] |
HO M X, PAN C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J]. International Journal of Heat and Mass Transfer, 2014, 70: 174-184.
doi: 10.1016/j.ijheatmasstransfer.2013.10.078 |
| [40] |
MA B J, SHIN D, BANERJEE D. Synthesis and characterization of molten salt nanofluids for thermal energy storage application in concentrated solar power plants: Mechanistic understanding of specific heat capacity enhancement[J]. Nanomaterials, 2020, 10(11): 2266.
doi: 10.3390/nano10112266 |
| [41] |
HU Y W, HE Y R, ZHANG Z D, et al. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 192: 94-102.
doi: 10.1016/j.solmat.2018.12.019 |
| [42] |
AHMAD ALJAERANI H, SAMYKANO M, PANDEY A K, et al. Thermophysical properties enhancement and characterization of CuO nanoparticles enhanced HITEC molten salt for concentrated solar power applications[J]. International Communications in Heat and Mass Transfer, 2022, 132: 105898.
doi: 10.1016/j.icheatmasstransfer.2022.105898 |
| [43] |
AHMAD ALJAERANI H, SAMYKANO M, PANDEY A K, et al. Effect of TiO2 nanoparticles on the thermal energy storage of HITEC salt for concentrated solar power applications[J]. Journal of Energy Storage, 2023, 72: 108449.
doi: 10.1016/j.est.2023.108449 |
| [44] |
SARANPRABHU M K, RAJAN K S. Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage[J]. Renewable Energy, 2019, 141: 451-459.
doi: 10.1016/j.renene.2019.04.027 |
| [45] |
JEONG S, JO B. Distinct behaviors of KNO3 and NaNO3 in specific heat enhancement of molten salt nanofluid[J]. Journal of Energy Storage, 2023, 57: 106209.
doi: 10.1016/j.est.2022.106209 |
| [46] |
ZHANG X P, LU Y W, YU Q, et al. Study on preparation and thermophysical characteristics of molten salt nanocomposite by microwave method[J]. Solar Energy Materials and Solar Cells, 2021, 220: 110846.
doi: 10.1016/j.solmat.2020.110846 |
| [47] |
YU Y S, TAO Y B, ZHAO C Y, et al. Thermal storage performance enhancement and regulation mechanism of KNO3-SWCNT based composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121870.
doi: 10.1016/j.ijheatmasstransfer.2021.121870 |
| [48] |
SARANPRABHU M K, RAJAN K S. Enhancement of solid-phase thermal conductivity and specific heat of solar salt through addition of MWCNT: New observations and implications for thermal energy storage[J]. Applied Nanoscience, 2019, 9(8): 2117-2126.
doi: 10.1007/s13204-019-01107-0 |
| [49] |
WONG W P, WALVEKAR R, VAKA M, et al. Hybrid MWCNT/TiO2 nanoparticles based high-temperature quinary nitrate salt mixture for thermal energy storage applications[J]. Journal of Energy Storage, 2023, 73: 108792.
doi: 10.1016/j.est.2023.108792 |
| [50] |
XIE Q Z, ZHU Q Z, LI Y. Thermal storage properties of molten nitrate salt-based nanofluids with graphene nanoplatelets[J]. Nanoscale Research Letters, 2016, 11(1):306.
doi: 10.1186/s11671-016-1519-1 pmid: 27325522 |
| [51] |
BAGASTYO A Y, SINATRIA A Z, ANGGRAINY A D, et al. Resource recovery and utilization of bittern wastewater from salt production:A review of recovery technologies and their potential applications[J]. Environmental Technology Reviews, 2021, 10(1): 295-322.
doi: 10.1080/21622515.2021.1995786 |
| [52] |
SINGH I B. The influence of moisture on the oxidation rate of iron in NaNO3 and KNO3 melts[J]. Corrosion Science, 1995, 37(12): 1981-1989.
doi: 10.1016/0010-938X(95)00086-Y |
| [53] |
ISHITSUKA T, NOSE K. Stability of protective oxide films in waste incineration environment: Solubility measurement of oxides in molten chlorides[J]. Corrosion Science, 2002, 44(2): 247-263.
doi: 10.1016/S0010-938X(01)00059-2 |
| [54] | GIMENEZ P, FERERES S. Effect of heating rates and composition on the thermal decomposition of nitrate based molten salt[C]. Proceedings of the International Conference on Concentrating Solar Power and Chemical Energy Systems (SolarPACES), Beijing, 2015. |
| [55] |
CASTRO-QUIJADA M, FAUNDEZ D, ROJAS R, et al. Improving the working fluid based on a NaNO3-KNO3-NaCl-KCl molten salt mixture for concentrating solar power energy storage[J]. Solar Energy, 2022, 231: 464-472.
doi: 10.1016/j.solener.2021.11.058 |
| [56] |
LI Y, TAN W W, WANG C G, et al. Research on the effect of adding NaCl on the performance of KNO3-NaNO3 binary molten salt[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(3): 733-739.
doi: 10.1007/s10973-022-11791-w |
| [57] |
LUO Y X, SONG P, YANG X B, et al. Impact of CO32- impurities on the thermal performance of solar salt in thermal energy storage[J]. Journal of Energy Storage, 2024, 84: 110886.
doi: 10.1016/j.est.2024.110886 |
| [58] | 杜宝强, 王怀有, 李锦丽, 等. 杂质SO42-对Solar Salt熔盐热物性的影响及分析[J]. 无机盐工业, 2017, 49(5): 42-44. |
| DU Baoqiang, WANG Huaiyou, LI Jinli, et al. Influence and analysis of SO42- impurity on thermal stability of Solar Salt molten salts[J]. Inorganic Chemicals Industry, 2017, 49(5): 42-44. | |
| [59] | 杜宝强, 王怀有, 李锦丽, 等. 氯离子对Solar Salt熔盐热物性的影响及结构分析[J]. 应用化工, 2017, 46(6): 1086-1088, 1092. |
| DU Baoqiang, WANG Huaiyou, LI Jinli, et al. Influence of Cl- on thermal stability of NaNO3-KNO3 mixed molten salts[J]. Applied Chemical Industry, 2017, 46(6): 1086-1088, 1092. | |
| [60] |
SUN Z, HU C J, NI H O, et al. Influence of impurity SO42- on the thermal performance of molten nitrates used for thermal energy storage[J]. Energy Technology, 2018, 6(10): 2065-2073.
doi: 10.1002/ente.v6.10 |
| [61] |
SUN Z, SU L, GAO X Y, et al. Influences of impurity Cl- on the thermal performance of solar salt for thermal energy storage[J]. Solar Energy, 2021, 216: 90-95.
doi: 10.1016/j.solener.2020.12.057 |
| [62] |
SANG L X, LV X Y, WU Y T. NaNO3-KNO3-KCl/K2CO3 with the elevated working temperature for CSP application: Phase diagram calculation and machine learning[J]. Solar Energy, 2023, 252: 322-329.
doi: 10.1016/j.solener.2023.02.009 |
| [63] |
PENG Q, DING J, WEI X L, et al. The preparation and properties of multi-component molten salts[J]. Applied Energy, 2010, 87(9): 2812-2817.
doi: 10.1016/j.apenergy.2009.06.022 |
| [64] |
WALCZAK M, PINEDA F, FERNÁNDEZ Á G, et al. Materials corrosion for thermal energy storage systems in concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2018, 86: 22-44.
doi: 10.1016/j.rser.2018.01.010 |
| [65] |
GRABKE H J, REESE E, SPIEGEL M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits[J]. Corrosion Science, 1995, 37(7): 1023-1043.
doi: 10.1016/0010-938X(95)00011-8 |
| [66] |
RUIZ-CABAÑAS F J, PRIETO C, MADINA V, et al. Materials selection for thermal energy storage systems in parabolic trough collector solar facilities using high chloride content nitrate salts[J]. Solar Energy Materials and Solar Cells, 2017, 163: 134-147.
doi: 10.1016/j.solmat.2017.01.028 |
| [67] |
ONG T C, SARVGHAD M, LIPPIATT K, et al. Review of the solubility, monitoring, and purification of impurities in molten salts for energy storage in concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110006.
doi: 10.1016/j.rser.2020.110006 |
| [68] |
FERNÁNDEZ A G, PÉREZ F J. Improvement of the corrosion properties in ternary molten nitrate salts for direct energy storage in CSP plants[J]. Solar Energy, 2016, 134: 468-478.
doi: 10.1016/j.solener.2016.05.030 |
| [69] |
GAO Q, LU Y W, YANG Y C, et al. Are unexpected chloride ions in molten salt really harmful to stainless steel?[J]. Journal of Energy Storage, 2022, 54: 105317.
doi: 10.1016/j.est.2022.105317 |
| [70] |
LAI X, YIN H Q, YANG Z G, et al. Synergistic effect of Cl- and F- on the corrosion behavior and mechanism of 316 stainless steel in NaNO3-based molten salts and vapor[J]. Journal of Energy Storage, 2023, 65: 107243.
doi: 10.1016/j.est.2023.107243 |
| [1] | HONG Liu, LYU Daoxin, YANG Zhongtao, MA Shaowu, JIANG Xue. Linearized calculation method of critical inertia in energy power systems with renewable energy and its application [J]. Integrated Intelligent Energy, 2025, 47(9): 10-17. |
| [2] | ZHANG Yuanxi, YANG Guohua, MA Longteng, MA Xin, LIU Yaoze. Optimized wind-solar-storage configuration of industrial park microgrids based on improved differential evolution algorithm [J]. Integrated Intelligent Energy, 2025, 47(9): 71-79. |
| [3] | ZHOU Kai, WU Yanxi, HUANG Yuxiang, YANG Jinghao, FAN Xiaochao, LI Jianwei, WEI Zhizong, TENG Jian, CHEN Li, YE Qin, ZHANG Hao, JIANG Junnan. Large-scale gravity energy storage technology for solid flow in areas with large altitude differences [J]. Integrated Intelligent Energy, 2025, 47(8): 1-9. |
| [4] | ZHEN Wenxi, MA Xiping, DAI Yuehong, NIU Wei, CHEN Baixu, ZENG Gui. Research on wind-storage self-synchronizing frequency regulation strategy based on intermediate layer control [J]. Integrated Intelligent Energy, 2025, 47(8): 21-29. |
| [5] | CHU Longhao, LI Xiaozhu. Bidding strategies and value allocation mechanism for multi-type electric energy trading with participation of shared energy storage [J]. Integrated Intelligent Energy, 2025, 47(8): 30-39. |
| [6] | ZHAI Shuo, ZHANG Zhiyuan, WANG Weisheng, TIAN Runduo, ZHANG Weizhi, WANG Rui. Vehicle-vehicle energy mutual aid control strategy for electric vehicles [J]. Integrated Intelligent Energy, 2025, 47(8): 40-48. |
| [7] | TAN Jiaqun, LYU Ruxuan, JU Hongjin, HONG Chunxue, XIAO Haiping, LEI Jing, HAN Zhenxing. Research on optimal scheduling strategy of wind-photovoltaic-thermal-storage integrated energy system based on IBES [J]. Integrated Intelligent Energy, 2025, 47(8): 68-76. |
| [8] | ZHENG Haoyu, ZHOU Jiahui, TONG Bin, WANG Haiming, XU Gang, ZHANG Ziyue. Research on capacity allocation and operation scheduling optimization of green hydrogen system with compressed air energy storage [J]. Integrated Intelligent Energy, 2025, 47(7): 64-70. |
| [9] | ZHANG Debin, LIN Wenye, HE Zixuan, YUE Xinru, SONG Wenji, FENG Ziping, FARID Mohammed Mehdi, USHAK DE GRAGEDA Svetlana Nikolaevna. Day-ahead dispatch optimization for integrated energy system in building prosumer community using generalized energy storage [J]. Integrated Intelligent Energy, 2025, 47(7): 82-92. |
| [10] | LI Xiaoning, SUN Na, HUANG Amin, DONG Haiying. Fuzzy active disturbance rejection control of PEMFC air intake unit based on snake optimization algorithm [J]. Integrated Intelligent Energy, 2025, 47(6): 57-73. |
| [11] | WANG Cheng, SHAO Chong, HE Xin, DONG Haiying. Optimal power allocation for electrochemical energy storage power stations based on MOIBKA algorithm [J]. Integrated Intelligent Energy, 2025, 47(6): 74-84. |
| [12] | YE Xing, QIU Chen, AI Lin, XIN Songxu, GUO Yanheng. Connection mechanism between green certificates and carbon trading mechanism under the "double carbon" target [J]. Integrated Intelligent Energy, 2025, 47(5): 12-20. |
| [13] | CHEN Hao, MA Gang, QIAN Da, MA Jian, PENG Leyao. Optimization of regional integrated energy systems under green certificate and carbon trading mechanism considering tiered demand response [J]. Integrated Intelligent Energy, 2025, 47(5): 21-30. |
| [14] | ZHANG Wenbo, QIN Wenping, LIU Jiaxin, CHEN Yumei, LIU Boyang, ZHAO Anting. Robust optimization scheduling strategy for virtual power plants considering demand response and leasing shared energy storage under the green certificate-electricity- carbon coupled market [J]. Integrated Intelligent Energy, 2025, 47(5): 31-40. |
| [15] | LIANG Haiping, WANG Jinying. Research on day-ahead electricity market trading of photovoltaic and energy storage charging stations considering dual uncertainties [J]. Integrated Intelligent Energy, 2025, 47(5): 62-72. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

