Integrated Intelligent Energy ›› 2021, Vol. 43 ›› Issue (12): 36-45.doi: 10.3969/j.issn.1674-1951.2021.12.006
• Carbon Neutrality and Carbon Peaking System • Previous Articles Next Articles
MA Shuangchen1(), YANG Pengwei1, WANG Fangfang2, FAN Shuaijun1, ZHAO Guangjin2, LI Qi1, YUAN Wenxi3, LU Rui1, QIU Mingjie1
Received:
2021-10-12
Revised:
2021-11-30
Published:
2021-12-25
CLC Number:
MA Shuangchen, YANG Pengwei, WANG Fangfang, FAN Shuaijun, ZHAO Guangjin, LI Qi, YUAN Wenxi, LU Rui, QIU Mingjie. Challenges and countermeasures of traditional thermal power under the goals of carbon neutrality and carbon peaking[J]. Integrated Intelligent Energy, 2021, 43(12): 36-45.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.12.006
[1] | 屈博, 刘畅, 李德智, 等. “碳中和”目标下的电能替代发展战略研究[J]. 电力需求侧管理, 2021, 23(2):1-3,9. |
QU Bo, LIU Chang, LI Dezhi, et al. Research on the development strategy of electricity substitution under the target of "carbon neutral"[J]. Power Demand Side Management, 2021, 23(2):1-3,9. | |
[2] | 国家统计局. 中华人民共和国2019年国民经济和社会发展统计公报[J]. 今日工程机械, 2020(1):16-18. |
[3] | 国际能源署. 2019年全球碳排放报告[R]. 2020. |
[4] | 侯艳峰. 燃煤-捕碳机组热力系统优化研究[D]. 北京:华北电力大学, 2016. |
[5] | POLLITTH Hector. 分析:在2060 年实现“碳中和” 可使我国“更富足”[R/OL]. ( 2020-09-29)[2021-10-29]. https://www.carbonbrief.org/https-www-carbonbrief-org-2060-tan-zhong-he-ke-shi-zhong-guo-geng-fu-zu |
[6] | 刘继生 基于综合物探的矿井采空区探测技术研究[J]. 中国化工贸易, 2020, 12(30):101,103. |
[7] | 姜克隽. IPCC 1.5 ℃特别报告发布,温室气体减排新时代的标志[J]. 气候变化研究进展, 2018, 14(6):640-642. |
JIANG Kejuan. IPCC special report on 1.5 ℃ warming: A starting of new era of global mitigation[J]. Climate Change Research, 2018, 14(6):640-642. | |
[8] | IPCC special report global warming of 1.5 ℃[J]. Energy focus, 2018, 35(3):10-11. |
[9] | Special report on global warming[J]. Fuel Oil News, 2018, 83(11):36-37. |
[10] | 王涵宇, 吴思萱, 张扬清, 等. 德国推进碳中和的路径及对我国的启示[J]. 可持续发展经济导刊, 2021(3):27-30. |
WANG Hanyu, WU Sixuan, ZHANG Yangqing, et al. The path of carbon neutral in Germany and its enlightenment to China[J]. Carbon Neutral, 2021(03):27-30. | |
[11] | 龙云. 法国低碳能源转型战略研究[J]. 海峡科技与产业, 2020(10):10-13. |
[12] | 杜群, 李子擎 国外碳中和的法律政策和实施行动[J]. 中国环境报, 2021-04-16(6). |
[13] | 段晓男, 曲建升, 曾静静, 等. 《京都议定书》缔约国履约相关状况及其驱动因素初步分析[J]. 世界地理研究, 2016, 25(4):8-16. |
DUAN Xiaonan, QU Jiansheng, ZENG Jingjing, et al. Preliminary analysis on the carbon reduction performance and its driving factors based on the Kyoto protocol goals for annex I countries[J]. World Regional Studies, 2016, 25(4):8-16. | |
[14] | 曾文革, 周钰颖. 论《京都议定书》第二期承诺对国家发展权的保障及其局限性[J]. 东南大学学报(哲学社会科学版), 2013, 15(3):42-48. |
[15] | 李威. 从《京都议定书》到《巴黎协定》:气候国际法的改革与发展[J]. 上海对外经贸大学学报, 2016(5):62-73,84. |
LI Wei. From "Kyoto Protocol" to "Paris Agreement": The reform and development of international climate law[J]. Journal of Shanghai University of International Business and Economics, 2016(5):62-73,84. | |
[16] | SANTOS S, DIXON T. CCS in CDM mechanisms. IEA Greenhouse Gas R&D Programme[C]. Indonesia:CCOP-EPPM Workshop, 2012. |
[17] | 许明珠. 澳大利亚碳市场机制设计[J]. 世界环境, 2012(2):56-57. |
XU Mingzhu. The design of Australian carbon market mechanism[J]. World Environment, 2012(2):56-57. | |
[18] | 樊威. 澳大利亚碳市场执法监管体系对我国的启示[J]. 科技管理研究, 2020, 40(8):267-274. |
FAN Wei. The enlightenment of Australian carbon market law enforcement supervision system to China[J]. Science and Technology Management Research, 2020, 40(8):267-274. | |
[19] | 栾晶. 英国《气候变化法案》研究及其启示[D]. 济南:山东师范大学, 2011. |
[20] | 郑爽. 全国碳交易体系监管制度研究[J]. 中国能源, 2018, 40(11):17-20. |
[21] | 王志峰, 何雅玲, 康重庆, 等. 明确太阳能热发电战略定位促进技术发展[J]. 华电技术, 2021, 43(11):1-4. |
WANG Zhifeng, HE Yaling, KANG Chongqing, et al. Strategic positioning of solar thermal power generation to promote technological progress[J]. Huadian Technology, 2021, 43(11):1-4. | |
[22] | One NYC 2050 building a strong and fair city. New York City's green new deal[EB/OL]. ( 2019-05-01)[2021-10-07]. http://onenyc.cityofnewyork.us/strategies/onenyc-2050 |
[23] | 郝晓地, 魏静, 曹亚莉. 美国碳中和运行成功案例——Sheboygan污水处理厂[J]. 中国给水排水, 2014, 30(24):1-6. |
HAO Xiaodi, WEI Jing, CAO Yali. A successful case of carbon-neutral operation in America: Sheboygan WWTP[J]. China Water & Wastewater, 2014, 30(24):1-6. | |
[24] | FORCE J. Encouraging energy efficiency in US wastewater treatment[J]. Water21, 2009(6):32-34. |
[25] | 洪志超, 苏利阳. 国外城市碳中和策略及对我国的启示[J]. 环境保护, 2021, 49(16):68-71. |
HONG Zhichao, SU Liyang. The carbon neutral strategy of city in international and its implication to China[J]. Environmental Protection, 2021, 49(16):68-71. | |
[26] | City of Adelaide. 2020—2024 Strategic Plan: The most liveable city in the world[EB/OL]. ( 2020-11-05)[2021-11-05]. https://www.cityofadelaide.com.au/about-adelaide/research-statistics/wellbeing-indicators/ . |
[27] | 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6):58-64. |
WANG Can, ZHANG Yaxin. Implementation pathway and policy system of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2020, 12(6):58-64. | |
[28] | 郭伟, 唐人虎. 2060碳中和目标下的电力行业[J]. 能源, 2020(11):19-26. |
[29] | 电力规划设计总院. 我国能源发展报告2019 [R]. 2020. |
[30] | 李芸. 含大规模可再生能源的电力系统可靠性评估[D]. 银川:宁夏大学, 2020. |
[31] | 郭琦, 郭海平, 朱益华, 等. 可再生能源灵活消纳的数字物理智能决策平台研发及应用[Z]. 南方电网科学研究院有限责任公司, 2019. |
[32] | MELLO G, DIAS M F, ROBAINA M. Wind farms life cycle assessment review: CO2 emissions and climate change[J]. Energy Reports, 2020, 6(S8):214-219. |
[33] | 陈伟, 陈键. 消纳弃风电的风电供热系统经济性与设计[J]. 煤气与热力, 2020, 40(8):1-3. |
CHEN Wei, CHEN Jian. Heat source and cold source economy and design of wind power heating system for consuming abandoned wind power[J]. Gas & Heat, 2020, 40(8):1-3. | |
[34] | 魏海姣, 鹿院卫, 张灿灿, 等. 燃煤机组灵活性调节技术研究现状及展望[J]. 华电技术, 2020, 42(4):57-63. |
WEI Haijiao, LU Yuanwei, ZHANG Cancan, et al. Status and prospect of flexibility regulation technology for coal-fired power plants[J]. Huadian Technology, 2020, 42(4):57-63. | |
[35] | 吴厦成, 官思发, 吴洲钇, 等. 低碳背景下能源系统安全不容忽视——美国德州、英国伦敦停电事故反思[J]. 产业与科技论坛, 2021, 20(9):67-69. |
[36] | 朱法华, 王玉山, 徐振, 等. 我国电力行业碳达峰、碳中和的发展路径研究[J]. 电力科技与环保, 2021, 37(3):9-16. |
ZHU Fahua, WANG Yushan, XU Zhen, et al. Research on the development path of carbon peak and carbon neutrality in China's Power Industry[J]. Electric Power Technology and Environmental Protection, 2021, 37(3):9-16. | |
[37] |
HEPTONSTALL P J, GROSS R J K. A systematic review of the costs and impacts of integrating variable renewables into power grids[J]. Nature Energy, 2020, 6(1):72-83.
doi: 10.1038/s41560-020-00695-4 |
[38] | 夏丽娟, 苏艳萍, 王垂涨. 碳达峰碳中和背景下可再生能源发电环境保护问题探析[J]. 低碳世界, 2021, 11(6):125-126. |
[39] | 胡鞍钢. 我国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3):1-15. |
HU Angang. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology(Social Sciences Edition), 2021, 21(3):1-15. | |
[40] | 高虎. 2019年我国非化石能源发展形势分析及未来发展展望[J]. 中国能源, 2020, 42(3):4-8. |
[41] | 孙旭东, 张蕾欣, 张博. 碳中和背景下我国煤炭行业的发展与转型研究[J]. 中国矿业, 2021, 30(2):1-6. |
SUN Xudong, ZHANG Leixin, ZHANG Bo. Research on the coal industry development and transition in China under the background of carbon neutrality[J]. China Mining Magazine, 2021, 30(2):1-6. | |
[42] | 李政, 陈思源, 董文娟, 等. 现实可行且成本可负担的我国电力低碳转型路径[J]. 洁净煤技术, 2021, 27(2):1-7. |
LI Zheng, CHEN Siyuan, DONG wenjuan, et al. Feasible and affordable pathways to low-carbon power transition in China[J]. Clean Coal Technology, 2021, 27(2):1-7. | |
[43] | Climate action tracker. China going carbon neutral before 2060 would lower warming projections by around 0.2 to 0.3 degrees C[EB/OL]. ( 2020-09-23)[2021-11-05]. https://climateanalytics.org/latest/china-going-carbon-neutral-before-2060-would-lower-warming-projections-by-around-02-to-03-degrees-c/ |
[44] | 孙韶华, 王璐, 白涌泉, 等 拉闸限电的背后:煤炭价格高企火电企业发电意愿低迷[J]. 企业家日报, 2021-09-29(3). |
[45] | 水电水利规划设计总院. 中国可再生能源发展报告2020[M]. 北京: 中国水利水电出版社, 2017(3),2021. |
[46] | 康重庆, 姚良忠, 朱凌志, 等. 如何规划和运行含高比例可再生能源的未来电力系统[J]. 科技纵览, 2020(6):56-64. |
[47] | 孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术, 2020, 46(1):80-89. |
SUN Yushu, YANG Min, SHI Changli, et al. Analysis of application status and development trend of energy storage[J]. High Voltage Engineering, 2020, 46(1):80-89. | |
[48] | 张文建, 崔青汝, 李志强, 等. 电化学储能在发电侧的应用[J]. 储能科学与技术, 2020, 9(1):287-295. |
ZHANG Wenjian, CUI Qingru, LI Zhiqiang, et al. Application of electrochemical energy storage in power generation[J]. Energy Storage Science and Technology, 2020, 9(1):287-295. | |
[49] | 李先锋, 张洪章, 郑琼. 能源革命中的电化学储能技术[J]. 我国科学院院刊, 2019, 34(4):443-449. |
LI Xianfeng, ZHANG Hongzhang, ZHENG Qiong. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4):443-449. | |
[50] | 黄博文. 储能应用领域与场景综述[J]. 大众用电, 2020, 35(10):19-20. |
[51] | 丁玉龙, 来小康, 陈海生, 等. 储能技术及应用[M]. 北京: 化学工业出版社, 2018. |
[52] | 魏书洲, 李兵发, 孙晨阳, 等. 压缩空气储能技术及其耦合发电机组研究进展[J]. 华电技术, 2021, 43(7):9-16. |
WEI Shuzhou, LI Bingfa, SUN Chenyang, et al. Research progress of compressed air energy storage and its coupling power generation[J]. Huadian Technology, 2021, 43(7):9-16. | |
[53] | 张婷. 分布式蓄热在集中供热系统中的应用研究[D]. 2017. |
[54] | 华电电力科学研究院. 一种利用熔融盐蓄热实现电站调峰的装置:CN201720780491.5[P]. 2018-02-23. |
[55] | 赵长颖, 闫君, 赵耀. 如何实现媲美化石能源的大规模储能技术?[J]. 上海交通大学学报, 2021, 55(z1):91-92. |
ZHAO Changying, YAN Jun, ZHAO Yao. How to develop Large-scale energy storage technologies comparable to fossil fuels?[J]. Journal of Shanghai Jiaotong University, 2021, 55(z1):91-92. | |
[56] |
ZHAO Y, ZHAO C Y, MARKIDES C N, et al. Medium-and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review[J]. Applied Energy, 2020, 280:115950.
doi: 10.1016/j.apenergy.2020.115950 |
[57] | DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32. |
[58] | 刘金朋, 侯焘. 氢储能技术及其电力行业应用研究综述及展望[J]. 电力与能源, 2020, 41(2):230-233,247. |
LIU Jinpeng, HOU Xi. Review and prospect of hydrogen energy storage technology and its application in power industry[J]. Power & Energy, 2020, 41(2):230-233,247. | |
[59] |
SURYANTO B H R, DU H L, WANG D, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nature Catalysis, 2019, 2(4):290-296.
doi: 10.1038/s41929-019-0252-4 |
[60] | 葛睿, 胡旭, 董灵玉, 等. 电化学耦合阴极二氧化碳还原与阳极氧化合成[J]. 化工进展, 2021, 40(9):5132-5144. |
GE Ruin, HU Xu, DONG Lingyu, et al. Electrochemical coupling between cathodic carbon dioxide reduction and anodic oxidation synjournal[J]. Chemical Industry and Engineering Progress, 2021, 40(9):5132-5144. | |
[61] | 张丹彤. 光/电催化二氧化碳还原的过渡金属纳米材料制备及构效关系研究[D]. 长春:吉林大学, 2021. |
[62] | JIANG K, ASHWORTH P. The development of carbon capture utilization and storage (CCUS) research in China: A bibliometric perspective[J]. Renewable and Sustainable Energy Reviews, 2021, 138. |
[63] | 宋微, 张永春, 陈绍云. 化学溶剂法吸收二氧化碳试剂综述[C]// 二氧化碳减排与捕集、封存及绿色化利用研讨会论文集. 2009:114-119. |
[64] | 申硕, 樊静丽, 陈其针, 等. 碳捕集、利用与封存(CCUS)技术的文献计量分析[J]. 热力发电, 2021, 50(1):47-53. |
SHEN Shuo, FAN Jingli, CHEN Qizhen, et al. Bibliometric analysis of carbon capture, utilization and storage technology[J]. Thermal Power Generation, 2021, 50(1):47-53. | |
[65] | The global status of CCS 2019[R]. Australia: Globe CCS Institute, 2019. |
[66] | 张瑞. 有机胺溶剂化学结构与二氧化碳吸收-解吸性能构效关系的探究[D]. 长沙:湖南大学, 2018. |
[67] |
DIAO Y F, ZHENG X Y, HE B S, et al. Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing[J]. Energy Conversion and Management, 2003, 45(13-14):2283-2296.
doi: 10.1016/j.enconman.2003.10.011 |
[68] |
CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synjournal from carbon dioxide[J]. Science, 2021, 373(6562):1523-1527.
doi: 10.1126/science.abh4049 |
[69] | 刘牧心, 梁希, 林千果, 等. 碳中和驱动下CCUS项目衔接碳交易市场的关键问题和对策分析[J]. 中国电机工程学报, 2021, 41(14):4731-4739. |
LIU Muxin, LIANG Xi, LIN Qianguo, et al. Key issues and countermeasures of CCUS projects linking carbon emission trading market under the target of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(14):4731-4739. | |
[70] | 岳良. 烧结烟气脱硫系统流场数值分析与实验研究[D]. 武汉:华中科技大学, 2011. |
[71] | 邢晨健, 钱煜, 周燃, 等. 太阳能聚光光伏-余热碳捕集利用方式分析[J]. 华电技术, 2020, 42(4):84-88. |
XING Chenjian, QIAN Yu, ZHOU Ran, et al. Analysis of utilization modes combining concentrating photovoltaic power generation and photovoltaic residual heat driving carbon capture[J]. Huadian Technology, 2020, 42(4):84-88. | |
[72] | 毛健雄. 燃煤耦合生物质发电[J]. 分布式能源, 2017, 2(5):47-54. |
MAO Jianxiong. Co-firing biomass with coal for power generation[J]. Distributed Energy, 2017, 2(5):47-54. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[3] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[4] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[7] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[8] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[9] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[10] | WANG Yongli, WANG Yanan, MA Ziben, QIN Yumeng, CHEN Xichang, TENG Yue. Effectiveness evaluation on energy trading systems taking blockchain technology [J]. Integrated Intelligent Energy, 2024, 46(4): 78-84. |
[11] | DING Leyan, KE Song, YANG Jun, SHI Xingye. Control strategy of virtual synchronous generators based on adaptive control parameter setting [J]. Integrated Intelligent Energy, 2024, 46(3): 35-44. |
[12] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[13] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[14] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[15] | ZHANG Xinyi, YANG Bo. Stability analysis on islanded microgrids with grid-forming and grid-following converters [J]. Integrated Intelligent Energy, 2024, 46(2): 12-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||