Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (5): 69-77.doi: 10.3969/j.issn.2097-0706.2022.05.008
• Optimization for Operation • Previous Articles Next Articles
Ziqiu LI, Ying QIAO(), Zongxiang LU(
)
Received:
2022-01-17
Revised:
2022-03-24
Published:
2022-05-25
Contact:
Ying QIAO
E-mail:qiaoying@mail.tsinghua.edu.cn;luzongxiang98@tsinghua.edu.cn
CLC Number:
Ziqiu LI, Ying QIAO, Zongxiang LU. Operation optimization of offshore wind-multi-stack hydrogen system considering efficiency and lifetime[J]. Integrated Intelligent Energy, 2022, 44(5): 69-77.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.05.008
Table 3
Parameters of the EL,FC and proposed optimization model
参数 | 设定值 | |
---|---|---|
EL | Nel | 8 |
ke1 | 2.50×104 | |
ke2 | 0.96 | |
Kel,1/(μV·h-1) | 2.6×10-6 | |
Kel,2/(μV·h-1) | 2.6×10-6 | |
Kel,3/(μV·次-1) | 1.67×10-4 | |
Kel,4/(μV·次-1) | 3.52×10-5 | |
A/cm2 | 160 | |
FC | Nfc | 4 |
Kfc,1/(μV·h-1) | 8.66×10-6 | |
Kfc,2/(μV·h-1) | 1.00×10-5 | |
Kfc,3/(μV·次-1) | 13.790 0×10-6 | |
Kfc,4/(μV·次-1) | 0.418 5×10-6 | |
规划模型 | Pel,max/MW | 100 |
Pfc,max/MW | 16 | |
Ptrans/MW | 160 | |
Vmax/m3 | 5.618×105 | |
ph/(元·m-3) | 4.00 | |
pc/(元·m-3) | 1.85 | |
pe2/[元·(kW·h)-1] | 0.453 2 | |
μloss | 0.025 |
Table 4
Optimization results of different schemes
项目 | 方案1 | 方案2 | 方案3 | 方案4 |
---|---|---|---|---|
计划运行收益/万元 | 71.793 | 74.589 | 72.445 | 75.215 |
实际运行收益/万元 | 73.014 | 74.589 | 73.016 | 75.215 |
EL寿命平均衰减( | 1.504 8 | 1.394 7 | 1.414 6 | 1.289 2 |
EL寿命衰减偏移( | 18.162 0 | 0.802 8 | ||
EL平均效率/% | 71.37 | 72.74 | 70.84 | 72.63 |
FC寿命平均衰减( | 1.228 6 | 1.236 5 | 0.603 9 | 1.213 3 |
FC寿命衰减偏移( | 10.250 1 | 5.827 5 | ||
FC平均效率/% | 41.20 | 41.87 | 39.99 | 41.80 |
[1] | Global Wind Energy Council.Global Offshore Wind Report 2020[R/OL].(2020-08-05)[2022-01-10].https://gwec.net/global-offshore-wind-report-2020/. |
[2] | 王峰, 芮守娟, 王小合, 等.66 kV 海上风电交流集电方案的研究与发展前景[J]. 华电技术, 2020, 42(5): 61-65. |
WANG Feng, RUI Shoujuan, WANG Xiaohe, et al. Research and prospects of 66 kV offshore wind power AC collection scheme[J]. Huadian Technology, 2020, 42(5):61-65. | |
[3] | 张安安, 张红, 吴建中, 等. 离岸微型综合能源系统多目标随机规划[J]. 电力系统自动化, 2019, 43(7):129-135. |
ZHANG Anan, ZHANG Hong, WU Jianzhong, et al. Multi-objective stochastic planning for offshore micro integrated energy systems[J]. Automation of Electric Power Systems, 2019, 43(7):129-135. | |
[4] | 郭梦婕, 严正, 周云. 风电制氢装置的综合能源系统优化运行[J]. 中国电力, 2020, 53(1):115-123,161. |
GUO Mengjie, YAN Zheng, ZHOU Yun, et al. Optimized operation design of integrated energy system with wind power hydrogen production[J]. Electric Power, 2020, 53(1): 115-123, 161. | |
[5] | 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9):48-55. |
CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41(9):48-55. | |
[6] |
XIAO P F, HU W H, XU X, et al. Optimal operation of a wind-electrolytic hydrogen storage system in the electricity/hydrogen markets[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24412-24423.
doi: 10.1016/j.ijhydene.2020.06.302 |
[7] |
GUILBERT D, VITALE G. Dynamic emulation of a PEM electrolyzer by time constant based exponential model[J]. Energies, 2019, 12(4):750.
doi: 10.3390/en12040750 |
[8] | 李奇, 邹雪俐, 蒲雨辰, 等. 基于氢储能的热电联供型微电网优化调度方法[J/OL]. 西南交通大学学报(2021-10-28)[2022-01-10].https://kns.cnki.net/kcms/detail/51.1277.U.20211028.0902.002.html. |
[9] | 蔡钦钦, 肖宇, 朱永强. 计及电转氢和燃料电池的电热微网日前经济协调调度模型[J]. 电力自动化设备, 2021, 41(10):107-112,161. |
CAI Qinqin, XIAO Yu, ZHU Yongqiang. Day-ahead economic coordination dispatch model of electricity-heat microgrid considering P2H and fuel cells[J]. Electric Power Automation Equipment, 2021, 41(10):107-112,161. | |
[10] | WEI F R, SUI Q, LI X S, et al. Optimal dispatching of power grid integrating wind-hydrogen systems[J]. International Journal of Hydrogen Energy, 2021, 125:106489. |
[11] | 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3):463-472. |
SHEN Xiaojun, NIE Congying, LYU Hong. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3):463-472. | |
[12] |
HERR N, NICOD J M, VARNIER C, et al. Decision process to manage useful life of multi-stacks fuel cell systems under service constraint[J]. Renewable Energy, 2017, 105:590-600.
doi: 10.1016/j.renene.2017.01.001 |
[13] | 朱亚男, 李奇, 黄文强, 等. 基于功率自适应分配的多堆燃料电池系统效率协调优化控制[J]. 中国电机工程学报, 2019, 39(6):1714-1722. |
ZHU Yanan, LI Qi, HUANG Wenqiang, et al. Efficiency coordination and optimization control method of multi-stack fuel cell systems based on power adaptive allocation[J]. Proceedings of the CSEE, 2019, 39(6):1714-1722. | |
[14] |
HERNANDEZ-GOMEZ A, RAMIREZ V, GUILBERT D. Investigation of PEM electrolyzer modeling: Electrical domain, efficiency, and specific energy consumption[J]. International Journal of Hydrogen Energy, 2020, 45(46):14625-14639.
doi: 10.1016/j.ijhydene.2020.03.195 |
[15] |
YIGIT T, SELAMET O F. Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system[J]. International Journal of Hydrogen Energy, 2016, 41(32):13901-13914.
doi: 10.1016/j.ijhydene.2016.06.022 |
[16] |
ASL S M S, ROWSHANZAMIR S, EIKANI M H. Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell[J]. Energy, 2010, 35(4):1633-1646.
doi: 10.1016/j.energy.2009.12.010 |
[17] |
BIZON N, OPROESCU M, RACEANU M. Efficient energy control strategies for a standalone renewable/fuel cell hybrid power source[J]. Energy Conversion and Management, 2015, 90:93-110.
doi: 10.1016/j.enconman.2014.11.002 |
[18] |
PAPAKONSTANTINOU G, ALGARA-SILLER G, TESCHNER D, et al. Degradation study of a proton exchange membrane water electrolyzer under dynamic operation conditions[J]. Applied Energy, 2020, 280:115911.
doi: 10.1016/j.apenergy.2020.115911 |
[19] |
CHEN H, PEI P, SONG M. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied Energy, 2015, 142:154-163.
doi: 10.1016/j.apenergy.2014.12.062 |
[20] | WEIß A, SIEBEL A, BERNT M, et al. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer[J]. Journal of the Electrochemical Society, 2019, 166(8):487-497. |
[21] | 孟静. 计及风电消纳的峰谷分时电价定价机制研究[D]. 吉林: 东北电力大学, 2019. |
[22] |
FRANCO B A, BAPTISTA P, NETO R C, et al. Assessment of offloading pathways for wind-powered offshore hydrogen production:Energy and economic analysis[J]. Applied Energy, 2021, 286: 116553.
doi: 10.1016/j.apenergy.2021.116553 |
[23] | CHAPALOGLOU S, VARAGNOLO D, TEDESCHI E. Techno-economic evaluation of the sizing and operation of battery storage for isolated oil and gas platforms with high wind power penetration[C]// 45th Annual Conference of the IEEE Industrial Electronics Society. Lisbon: IEEE, 2019: 4587-4592. |
[24] |
蓝静, 朱继忠, 李盛林, 等. 考虑碳惩罚的电化学储能消纳风光与调峰研究[J]. 综合智慧能源, 2022, 44(1):9-17.
doi: 10.3969/j.issn.2097-0706.2022.01.002 |
LAN Jing, ZHU Jizhong, LI Shenglin, et al. Research on electrochemical energy storage to assist new energy consumption and peak load regulation considering carbon penalty[J]. Integrated Intelligent Energy, 2022, 44(1): 9-17.
doi: 10.3969/j.issn.2097-0706.2022.01.002 |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[3] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[4] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[5] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[6] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[7] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[8] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[9] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[10] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[11] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[12] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[13] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[14] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[15] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||