Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (8): 68-74.doi: 10.3969/j.issn.2097-0706.2022.08.007
• Cell System with Proton Conducting Electrolyte • Previous Articles Next Articles
XU Yangsen1(), ZHANG Lei2(
), BI Lei1,*(
)
Received:
2022-07-06
Revised:
2022-08-16
Published:
2022-08-25
Contact:
BI Lei
E-mail:1831575247@qq.com;zhanglei@aetl.com.cn;lei.bi@usc.edu.cn
CLC Number:
XU Yangsen, ZHANG Lei, BI Lei. Development and challenges of intermediate-temperature proton-conducting solid oxide fuel cells[J]. Integrated Intelligent Energy, 2022, 44(8): 68-74.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.08.007
[1] |
XU X, BI L, ZHAO X S. Highly-conductive proton-conducting electrolyte membranes with a low sintering temperature for solid oxide fuel cells[J]. Journal of Membrane Science, 2018, 558:17-25.
doi: 10.1016/j.memsci.2018.04.037 |
[2] |
WU S, LIU Y, WANG C, et al. Cobalt-free LaNi0.4Zn0.1Fe0.5O3-δ as a cathode for solid oxide fuel cells using proton-conducting electrolyte[J]. International Journal of Hydrogen Energy, 2021, 46(77):38482-38489.
doi: 10.1016/j.ijhydene.2021.09.104 |
[3] | XU X, WANG H, FRONZI M, et al. Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance[J]. Journal of Materials Chemistry, 2019, 7(36):20624-20632. |
[4] | IWAHARA H, ESAKA T, UCHIDA H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J]. Solid State Ionics, 1981, 3:359-363. |
[5] |
HOSSAIN S, ABDALLA A M, JAMAIN S N B, et al. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells[J]. Renewable and Sustainable Energy Reviews, 2017, 79:750-764.
doi: 10.1016/j.rser.2017.05.147 |
[6] | HAN D, UDA T. The best composition of an Y-doped BaZrO3 electrolyte:Selection criteria from transport properties, microstructure, and phase behavior[J]. Journal of Materials Chemistry, 2018, 6(38):18571-18582. |
[7] |
HAN D, TOYOURA K, UDA T. Protonated BaZr0. 8Y0.2O3-δ:Impact of hydration on electrochemical conductivity and local crystal structure[J]. ACS Applied Energy Materials, 2021, 4(2):1666-1676.
doi: 10.1021/acsaem.0c02832 |
[8] |
MIAO L, HOU J, GONG Z, et al. A high-performance cobalt-free Ruddlesden—Popper phase cathode La1.2Sr0.8Ni0.6Fe0.4O4+δ for low temperature proton-conducting solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(14):7531-7537.
doi: 10.1016/j.ijhydene.2019.01.255 |
[9] |
SHAN D, GONG Z, WU Y, et al. A novel BaCe0.5Fe0.3Bi0.2O3-δ perovskite-type cathode for proton-conducting solid oxide fuel cells[J]. Ceramics International, 2017, 43(4):3660-3663.
doi: 10.1016/j.ceramint.2016.11.206 |
[10] |
ZHOU X, HOU N, GAN T, et al. Enhanced oxygen reduction reaction activity of BaCe0.2Fe0.8O3-δ cathode for proton-conducting solid oxide fuel cells via Pr-doping[J]. Journal of Power Sources, 2021, 495:229776.
doi: 10.1016/j.jpowsour.2021.229776 |
[11] |
ZHANG L, YIN Y, XU Y, et al. Tailoring Sr2Fe1.5Mo0.5O6-δ with Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells[J]. Science China Materials, 2022, 65(6):1485-1494.
doi: 10.1007/s40843-021-1935-5 |
[12] |
RAINWATER B H, LIU M, LIU M. A more efficient anode microstructure for SOFC based on proton conductors[J]. International Journal of Hydrogen Energy, 2012, 37(23):18342-18348.
doi: 10.1016/j.ijhydene.2012.09.027 |
[13] |
HAN D, KURAMITSU A, ONISHI T, et al. Fabrication of protonic ceramic fuel cells via infiltration with Ni nanoparticles:A new strategy to suppress NiO diffusion & increase open circuit voltage[J]. Solid State Ionics, 2020, 345:115189.
doi: 10.1016/j.ssi.2019.115189 |
[14] |
BI L, FABBRI E, TRAVERSA E. Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFC)[J]. Electrochemistry Communications, 2012, 16(1):37-40.
doi: 10.1016/j.elecom.2011.12.023 |
[15] |
TAHIR N N M, BAHARUDDIN N A, SAMAT A A, et al. A review on cathode materials for conventional and proton-conducting solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2022, 894:162458.
doi: 10.1016/j.jallcom.2021.162458 |
[16] |
ZHU K, YANG Y, HUAN D, et al. Theoretical and experimental investigations on K-doped SrCo0.9Nb0.1O3-δ as a promising cathode for proton-conducting solid oxide fuel cells[J]. ChemSusChem, 2021, 14(18):3876-3886.
doi: 10.1002/cssc.202101100 |
[17] |
XU X, XU Y, MA J, et al. Tailoring electronic structure of perovskite cathode for proton-conducting solid oxide fuel cells with high performance[J]. Journal of Power Sources, 2021, 489:229486.
doi: 10.1016/j.jpowsour.2021.229486 |
[1] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[2] | HUANG Xiaofan, LI Jiarui, LIU Hui, TANG Xiaoping, WANG Ziyao, WANG Tong. Comprehensive benefit analysis on the cascade utilization of a power battery system [J]. Integrated Intelligent Energy, 2024, 46(7): 63-73. |
[3] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[4] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[5] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[6] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[7] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[8] | HAN Chaobing, TANG Bing, YIN Ruilin, ZHU Zhengxiang, XUE Minghua, ZHU Jianfei, AI Chunmei, SUN Li. Research on modeling and characteristic simulation of a typical integrated energy system [J]. Integrated Intelligent Energy, 2023, 45(6): 49-58. |
[9] | LIU Yuanyuan, GENG Zhi, ZHANG Yuanfeng, ZHANG Liang, HAN Zhao, ZHANG Bin. Analysis of heat transfer characteristics and thermal-permeability coupling characteristics of single U-tube borehole heat exchangers [J]. Integrated Intelligent Energy, 2023, 45(4): 81-88. |
[10] | YANG Zhengjun, LIANG Shixing, XU Gang, LIU Wenyi, WANG Ying, CUI Jianwei. Capacity optimization configuration of wind-solar complementary electricity-alcohol cogeneration system [J]. Integrated Intelligent Energy, 2023, 45(12): 71-78. |
[11] | HAN Shiwang, ZHAO Ying, ZHANG Xingyu, XUAN Chengbo, ZHAO Tiantian, HOU Xukai, LIU Qianqian. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality [J]. Integrated Intelligent Energy, 2022, 44(9): 20-26. |
[12] | WANG Kaiting, LI Xiaobin, ZHANG Hongna, LIU Shen, QU Kaiyang, LI Fengchen. Comprehensive evaluation for energy saving and emission reduction performance of turbulent drag reducing agent in heating systems [J]. Integrated Intelligent Energy, 2022, 44(9): 40-50. |
[13] | GAO Yuan, LI Zhi, LI Jiahong, GAO Jiutao, LI Chengxin, LI Changjiu. Progress in technologies of metal-supported solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 1-24. |
[14] | LUO Liqi, WANG Yue, ZHONG Haijun, LI Qingxun, XIE Guangyuan, WANG Shaorong. Design of the CHP system integrated with SOFC [J]. Integrated Intelligent Energy, 2022, 44(8): 25-32. |
[15] | ZHU Shasha, LI Zongbao, DENG Yatian, WANG Xin, JIA Lichao. Application of alloy nanoparticles in the anodes of hydrocarbon solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 33-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||