Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (8): 18-25.doi: 10.3969/j.issn.2097-0706.2023.08.003
• Optimal Operation and Control • Previous Articles Next Articles
LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong*()
Received:
2023-05-08
Revised:
2023-07-11
Published:
2023-08-25
Supported by:
CLC Number:
LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system[J]. Integrated Intelligent Energy, 2023, 45(8): 18-25.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.08.003
[1] |
WILBERFORCE T, OLABI A, SAYED E, et al. Progress in carbon capture technologies[J]. Science of the Total Environment, 2021, 761: 143203.
doi: 10.1016/j.scitotenv.2020.143203 |
[2] |
ALI M, ELSAID K, WILBERFORCE T, et al. Environmental aspects of fuel cells: A review[J]. Science of the Total Environment, 2021, 752: 141803.
doi: 10.1016/j.scitotenv.2020.141803 |
[3] |
LIN Q, ZHANG X, WANG T, et al. Technical perspective of carbon capture, utilization, and storage[J]. Engineering, 2022, 14: 27-32.
doi: 10.1016/j.eng.2021.12.013 |
[4] | SHIN W, RYU J, CHOI H, et al. Monitoring the movement of artificially injected CO2 at a shallow experimental site in Korea using carbon isotopes[J]. Environmental Management, 2020, 258:110030 |
[5] | 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL].(2021-10-24)[2023-03-17]. http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm. |
[6] |
CHAO C, DENG Y, DEWIL R, et al. Post-combustion carbon capture[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110490.
doi: 10.1016/j.rser.2020.110490 |
[7] | 温翯, 韩伟, 车春霞, 等. 燃烧后二氧化碳捕集技术与应用进展[J]. 精细化工, 2022, 39(8): 1584-1595. |
WEN He, HAN Wei, CHE Chunxia, et al. Progress of post-combustion carbon dioxide capture technology development and applications[J]. Fine Chemicals, 2022, 39(8): 1584-1595. | |
[8] |
胡长征, 王雅博, 刘圣春. MEA溶液在生物质电厂和燃煤电厂捕集CO2中的应用对比[J]. 综合智慧能源, 2022, 44(6): 78-85.
doi: 10.3969/j.issn.2097-0706.2022.06.009 |
HU Changzheng, WANG Yabo, LIU Shengchun. Application of MEA solution in the CO2 capture in biomass power plants and coal-fired power plants[J]. Integrated Intelligent Energy, 2022, 44(6): 78-85.
doi: 10.3969/j.issn.2097-0706.2022.06.009 |
|
[9] |
LAWAL A, WANG M, STEPHENSON P, et al. Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants[J]. Fuel, 2010, 89(10): 2791-2801.
doi: 10.1016/j.fuel.2010.05.030 |
[10] |
LAWAL A, WANG M, STEPHENSON P, et al. Demonstrating full-scale post combustion CO2 capture for coal-fired power plants through dynamic modelling and simulation[J]. Fuel, 2012, 101: 115-128.
doi: 10.1016/j.fuel.2010.10.056 |
[11] | CORMOS A, VASILE M, CRISTEA M. Flexible operation of CO2 capture processes integrated with power plant using advanced control techniques[J]. Computer Aided Chemical Engineering, 2015, 37:1547-1552. |
[12] |
HE X, WANG Y, BHATTACHARYYA D, et al. Dynamic modeling and advanced control of post-combustion CO2 capture plants[J]. Chemical Engineering Research and Design, 2018, 131: 430-439.
doi: 10.1016/j.cherd.2017.12.020 |
[13] |
AKINOLA T, OKO E, WU X, et al. Nonlinear model predictive control (NMPC) of the solvent-based post-combustion CO2 capture process[J]. Energy, 2020, 213: 118840.
doi: 10.1016/j.energy.2020.118840 |
[14] |
MEJDLL T, HVAMSDAL H, HAUGER S, et al. Demonstration of non-linear model predictive control for optimal flexible operation of a CO2 capture plant[J]. International Journal of Greenhouse Gas Control, 2022, 117: 103645.
doi: 10.1016/j.ijggc.2022.103645 |
[15] |
PATRON G, RICARDEZ S. An integrated real-time optimization, control, and estimation scheme for post-combustion CO2 capture[J]. Applied Energy, 2022, 308: 118302.
doi: 10.1016/j.apenergy.2021.118302 |
[16] |
LI Z, DING Z, WANG M, et al. Model-free adaptive control for MEA-based post-combustion carbon capture process[J]. Fuel, 2018, 224: 637-643.
doi: 10.1016/j.fuel.2018.03.096 |
[17] |
WU X, SHEN J, LI Y, et al. Dynamic behavior investigations and disturbance rejection predictive control of solvent-based post-combustion CO2 capture process[J]. Fuel, 2019, 242: 624-637.
doi: 10.1016/j.fuel.2019.01.075 |
[18] |
PATRON G, RICARDEZ S. A robust nonlinear model predictive controller for a post-combustion CO2 capture absorber unit[J]. Fuel, 2020, 265: 116932.
doi: 10.1016/j.fuel.2019.116932 |
[19] |
ZHANG Q, TURTON R, BHATTACHARYYA D. Nonlinear model-predictive control and H∞ robust control for a post combustion CO2 capture process[J]. International Journal of Greenhouse Gas Control, 2018, 70: 105-116.
doi: 10.1016/j.ijggc.2018.01.015 |
[20] |
LIAO P, LI Y, WU X, et al. Flexible operation of large-scale coal-fired power plant integrated with solvent-based post-combustion CO2 capture based on neural network inverse control[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102985.
doi: 10.1016/j.ijggc.2020.102985 |
[21] |
WU X, SHEN J, WANG M, et al. Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization[J]. Energy, 2020, 196: 117070.
doi: 10.1016/j.energy.2020.117070 |
[22] |
HAN J. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
doi: 10.1109/TIE.2008.2011621 |
[23] | GAO Z. Active disturbance rejection control: A paradigm shift in feedback control system design[C]//Proceedings of the 2006 American Control Conference. Minneapolis, USA, 2006: 2399-2405. |
[24] |
PAN Z, WANG X, HOANG T, et al. An enhanced phase-locked loop for non-ideal grids combining linear active disturbance controller with moving average filter[J]. International Journal of Electrical Power and Energy Systems, 2023, 149: 109021.
doi: 10.1016/j.ijepes.2023.109021 |
[25] |
WANG R, WU Z, LIN P, et al. Speed and voltage controllers design for the permanent magnet starter/generator[J]. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8314-8323.
doi: 10.1109/TIE.2023.3239923 |
[26] | CHEN G, JIANG Y, GUO K. Neural active disturbance rejection adaptive lateral manipulation control method for unmanned driving robot[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(1):397-399. |
[27] |
WANG Y, FANG S, HU J. Active disturbance rejection control based on deep reinforcement learning of PMSM for more electric aircraft[J]. IEEE Transactions on Power Electronics, 2023, 38(1):406-416.
doi: 10.1109/TPEL.2022.3206089 |
[28] |
QIN H, TAN P, CHEN Z, et al. Deep reinforcement learning based active disturbance rejection control for ship course control[J]. Neurocomputing, 2022, 484: 99-108.
doi: 10.1016/j.neucom.2021.06.096 |
[29] |
李朋真, 刘艳红, 吴振龙. 高比例可再生能源的多区域电力系统负荷频率自抗扰控制[J]. 综合智慧能源, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005 |
LI Pengzhen, LIU Yanhong, WU Zhenlong. Active disturbance rejection control on load frequency of multi-area power systems with high-proportion renewable energy[J]. Integrated Intelligent Energy, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005 |
|
[30] |
WU Z, HE T, LI D, et al. Superheated steam temperature control based on modified active disturbance rejection control[J]. Control Engineering Practice, 2019, 83: 83-97.
doi: 10.1016/j.conengprac.2018.09.027 |
[31] |
ZHANG W, MA C, LI H, et al. DMC-PID cascade control for MEA-based post-combustion CO2 capture process[J]. Chemical Engineering Research and Design, 2022, 182: 701-713.
doi: 10.1016/j.cherd.2022.04.030 |
[1] | HU Changzheng, WANG Yabo, LIU Shengchun. Application of MEA solution in the CO2 capture in biomass power plants and coal-fired power plants [J]. Integrated Intelligent Energy, 2022, 44(6): 78-85. |
[2] | LU Xiaomin, ZHANG Ming, DENG Xing, WANG Liwei, TAO Yibin, HU Anping. Optimal capacity configuration for multi-station integration considering multiple uncertainties [J]. Integrated Intelligent Energy, 2022, 44(1): 31-38. |
[3] | ZHANG Shufan, CHENG Xingxing, WANG Luyuan, ZHANG Xingyu, WANG Zhiqiang. Research on carbon sequestration path of steel slag carbonation under carbon neutralization background [J]. Huadian Technology, 2021, 43(6): 86-91. |
[4] | SUN Luchang, WANG Zhengrong, WU Chong, WANG Kailiang, ZHANG Shiming, HAN Wenquan. Research on operation optimization of a 10 000 t/a carbon capture project for coal-fired power plants [J]. Huadian Technology, 2021, 43(6): 69-78. |
[5] | QIAN Yu, YAN Aijing, XING Chenjian, WANG Ruilin. Research on a carbon capture system coupling parabolic trough solar collectors with coal-fired power generating units [J]. Huadian Technology, 2021, 43(6): 61-68. |
[6] | ZHAO Ruikai, ZHAO Li, ZHAO Jun. Effectiveness and techno-economic analysis on temperature swing adsorption for CO2 capture targeting at carbon neutrality [J]. Huadian Technology, 2021, 43(6): 41-46. |
[7] | YU Xiaobao, ZHENG Dandan, YANG Kang, KONG Jie, ZHANG Tianhao. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak [J]. Huadian Technology, 2021, 43(6): 21-32. |
[8] | WANG Yongzhen, HAN Kai, ZHAO Jun, WANG Jianxiao, GONG Yulie, FAN Yifan. Orientation and participation mode of geothermal power generation in the new power system [J]. Huadian Technology, 2021, 43(11): 58-65. |
[9] | XING Chenjian,QIAN Yu,ZHOU Ran,WANG Ruilin*. Analysis of utilization modes combining concentrating photovoltaic power generation and photovoltaic residual heat driving carbon capture [J]. Huadian Technology, 2020, 42(4): 84-88. |
[10] |
QIAO Wenjuan.
Charging load prediction of electric vehicles based on Monte Carlo simulation
[J]. Huadian Technology, 2018, 40(6): 19-22.
|
[11] | SUN Luchang1, SHEN Yuhui1, SAITO Satoshi2, MO Liping3, NIU Jianyu1, TIAN Lijuan1. Feasibility study of retrofitting carbon capture sysetem for gas steam combined cycle power plant [J]. Huadian Technology, 2016, 38(4): 1-7. |
[12] | LI Xiangling;SUN Shouyi;XU Wei. Analysis on feasibility of carbon capture and carbon capture & utilization & sequestration technology [J]. Huadian Technology, 2011, 33(7): 68-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||