Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (8): 80-89.doi: 10.3969/j.issn.2097-0706.2023.08.010
• Low-carbon Technical Economy • Previous Articles
YU Haibin(), GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi
Received:
2023-04-14
Revised:
2023-04-26
Published:
2023-08-25
Supported by:
CLC Number:
YU Haibin, GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi. Low-carbon economic scheduling of deep peak regulating market with the participation of wind power,thermal power,storage and carbon capture units considering demand response[J]. Integrated Intelligent Energy, 2023, 45(8): 80-89.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.08.010
Table 2
Overview of energy storage participation in electricity market abroad
项目 | 澳大利亚 | 英国 | PJM | CASIO |
---|---|---|---|---|
电能 市场 | 申报充电报价和放电报价,依靠尖峰电价套利 | 双边交易,交易所交易,平衡交易 | “量-价”阶梯报价,统一调度规划,自计划 | 充放电投标价,循环充放电价差投标,自计划 |
辅助服务市场 | 调频市场(调节调频市场,应急调频市场) | 调频市场(快速调频),备用市场(短期运行备用,快速备用) | 调频市场,备用市场(旋转备用、非旋转备用) | 调频市场(上调频,下调频)灵活爬坡(向上灵活爬坡、向下灵活爬坡),备用市场(旋转备用、非旋转备用) |
容量 市场 | 参与容量市场 | 参与容量市场 | 参与容量市场 |
Table 2
Overview of energy storage participation in electricity market abroad
项目 | 澳大利亚 | 英国 | PJM | CASIO |
---|---|---|---|---|
电能 市场 | 申报充电报价和放电报价,依靠尖峰电价套利 | 双边交易,交易所交易,平衡交易 | “量-价”阶梯报价,统一调度规划,自计划 | 充放电投标价,循环充放电价差投标,自计划 |
辅助服务市场 | 调频市场(调节调频市场,应急调频市场) | 调频市场(快速调频),备用市场(短期运行备用,快速备用) | 调频市场,备用市场(旋转备用、非旋转备用) | 调频市场(上调频,下调频)灵活爬坡(向上灵活爬坡、向下灵活爬坡),备用市场(旋转备用、非旋转备用) |
容量 市场 | 参与容量市场 | 参与容量市场 | 参与容量市场 |
[15] | CHEN Dapeng, JING Zhaoxia. Analysis of FM compensation mechanism in US FM auxiliary Service Market[J]. Automation of Electric Power Systems, 2017, 41(18):1-9. |
[16] | 杨水丽, 李建林, 李蓓, 等. 电池储能系统参与电网调频的优势分析[J]. 电网与清洁能源, 2013, 29(2):43-47. |
YANG Shuili, LI Jianlin, LI Bei, et al. Analysis of advantages of battery energy storage system participating in power grid frequency modulation[J]. Power Grid and Clean Energy, 2013, 29(2):43-47. | |
[17] | 陶以彬, 薛金花, 王德顺, 等. 面向电网调峰调频的储能电站综合性能评价[J]. 电源技术, 2021, 45(6):764-767. |
TAO Yibin, XUE Jinhua, WANG Deshun, et al. Comprehensive performance evaluation of energy storage power station oriented to power grid peak and frequency modulation[J]. Power Sources Technology, 2021, 45(6):764-767. | |
[18] | 陈中飞, 荆朝霞, 陈达鹏, 等. 美国调频辅助服务市场的定价机制分析[J]. 电力系统自动化, 2018, 42(12):1-10. |
CHEN Zhongfei, JING Zhaoxia, CHEN Dapeng, et al. Analysis on Pricing mechanism of FM auxiliary service market in the United States[J]. Automation of Electric Power Systems, 2018, 42(12):1-10. | |
[19] | 刘国静, 李冰洁, 胡晓燕, 等. 澳大利亚储能相关政策与电力市场机制及对我国的启示[J]. 储能科学与技术, 2022, 11(7):2332-2343. |
[1] | 崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42(16):5869-5886. |
[19] | LIU Guojing, LI Bingjie, HU Xiaoyan, et al. Energy storage Policy in Australia and power market mechanism and enlightenment to our country[J]. Energy storage Science and Technology, 2022, 11(7):2332-2343. |
[1] | CUI Yang, DENG Guibo, ZENG Peng, et al. Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2002, 42(16):5869-5886. |
[2] | 彭元, 娄素华, 吴耀武, 等. 考虑储液式碳捕集电厂的含风电系统低碳经济调度[J]. 电工技术学报, 2021, 36(21):4508-4516. |
[20] | 庄晓丹, 刘卫东, 黄为群, 等. 浙江电力现货市场环境下储能的市场交易机制与效益分析[J]. 中国电力, 2022, 55(6):80-85. |
[2] | PENG Yuan, LOU Suhua, WU Yaowu, et al. Low-carbon economic dispatch of power system with wind power considering solvent-storaged carbon capture power plant[J]. Transactions of China Electrotechnical Society, 2021, 36(21):4508-4516. |
[20] | ZHUANG Xiaodan, LIU Weidong, HUANG Weiqun, et al. Market trading mechanism and benefit analysis of energy storage in Zhejiang electric power spot market[J]. Electric Power of China, 2022, 55(6):80-85. |
[3] |
张松岩, 苗世洪, 尹斌鑫, 等. 考虑火电深度调峰的多类型储能经济性分析[J]. 电力建设, 2022, 43(1):132-142.
doi: 10.12204/j.issn.1000-7229.2022.01.015 |
[21] | 高海翔, 董超, 孟子杰, 等. 机组储能联合系统参与调频辅助服务市场的关键技术研究与实践[J]. 广东电力, 2020, 33(6):46-52. |
[3] |
ZHANG Songyan, MIAO Shihong, YIN Binxin, et al. Economic analysis of multi-type energy storages considering the deep peak-regulation of thermal power units[J]. Electric Power Construction, 2022, 43(1):132-142.
doi: 10.12204/j.issn.1000-7229.2022.01.015 |
[21] | GAO Haixiang, DONG Chao, MENG Zijie, et al. Research and Practice on key technologies of unit energy storage integrated system participating in frequency modulation auxiliary service market[J]. Guangdong Electric Power, 2020, 33(6):46-52. |
[4] | 薛晨, 任景, 张小东, 等. 含虚拟储能的新能源高渗透电网深度调峰备用决策模型[J]. 中国电力, 2019, 52(11):35-43. |
[22] | 史沛然, 李彦宾, 江长明. 第三方独立主体参与华北电力调峰市场规则设计与实践[J]. 电力系统自动化, 2021, 45(5):168-174. |
[4] | XUE Chen, REN Jing, ZHANG Xiaodong, et al. A reserve decision model for high-proportional renew energy integrated power grid based on deep peak-shaving and virtual storage[J]. Electric Power of China, 2019, 52(11):35-43. |
[22] | SHI Peiran, LI Yanbin, JIANG Changming. The design and practice of peak regulating market rules of electric power in North China[J]. Automation of Electric Power Systems, 2021, 45(5):168-174. |
[5] | 李军徽, 张嘉辉, 穆钢, 等. 储能辅助火电机组深度调峰的分层优化调度[J]. 电网技术, 2019, 43(11):3961-3969. |
[23] | 宁剑, 江长明, 张哲, 等. 可调节负荷资源参与电网调控的思考与技术实践[J]. 电力系统自动化, 2020, 44(17):1-8. |
NING Jing, JIANG Changming, ZHANG Zhe, et al. Adjustable load resources to participate in power grid control thinking and technology practice[J]. Automation of electric power systems, 2020, 44 (17):1-8. | |
[5] | LI Junhui, ZHANG Jiahui, MU Gang, et al. Hierarchical optimization scheduling of deep peak shaving for energy-storage auxiliary thermal power generating units[J]. Power Grid Technology, 2019, 43(11):3961-3969. |
[6] | 李雄威, 王昕, 顾佳伟, 等. 考虑火电深度调峰的风光火储系统日前优化调度[J]. 中国电力, 2023, 56(1):1-7,48. |
[24] | 林阿竹, 柯清辉, 江岳文. 独立储能参与调频辅助服务市场机制设计[J]. 电力自动化设备, 2022, 42(12):26-34. |
LIN Azhu, KE Qinghui, JIANG Yuewen. Independent energy storage participating in frequency modulation auxiliary service market mechanism design[J]. Electric Power Automation Equipment, 2022, 42(12):26-34. | |
[6] | LI Xiongwei, WANG Xin, GU Jiawei, et al. Day-ahead optimal dispatching of wind-solar-thermal power storage system considering deep peak shaving of thermal power[J]. Electric Power of China, 2023, 56(1):1-7,48. |
[25] | 李博嵩, 王旭, 蒋传文, 等. 广泛负荷聚集商市场策略建模及风险效益分析[J]. 电力系统自动化, 2018, 42(16):119-126. |
[7] |
童家麟, 吴瑞康, 茅建波, 等. 燃煤机组深度调峰瓶颈改善及耦合调峰技术研究[J]. 综合智慧能源, 2022, 44(4):43-50.
doi: 10.3969/j.issn.2097-0706.2022.04.006 |
[25] | LI Bosong, WANG Xu, JIANG Chuanwen, et al. Wide load gather dealer market strategy modeling and risk benefit analysis[J]. Automation of Electric Power Systems, 2018, 42(16):119-126. |
[7] |
TONG Jialin, WU Ruikang, MAO Jianbo, et al. Improvement of deep peak regulation and comprehensive peak shaving technologies for coal-fired units[J]. Integrated Intelligent Energy, 2022, 44(4): 43-50.
doi: 10.3969/j.issn.2097-0706.2022.04.006 |
[26] | 李翔宇, 赵冬梅. 计及可调资源动态特性的虚拟电厂多级优化配置[J]. 电力系统自动化, 2020, 44(13):17-24. |
[8] | 陈启鑫, 房曦晨, 郭鸿业, 等. 储能参与电力市场机制:现状与展望[J]. 电力系统自动化, 2021, 45(16):14-28. |
[26] | LI Xiangyu, ZHAO Dongmei. Meter and dynamic characteristics of adjustable resources multilevel optimization configuration of virtual power plant[J]. Automation of Electric Power Systems, 2020, 44 (13):17-24. |
[8] | CHEN Qixin, FANG Xichen, GUO Hongye, et al. Energy storage participation in electric power market mechanism: Current situation and prospect[J]. Automation of Electric Power Systems, 201, 45(16): 14-28. |
[27] | 陈定会, 尚楠, 叶承晋. 分布式抽水蓄能系统的市场力机理分析[J]. 电力需求侧管理, 2019, 21(3):69-72. |
[9] | 宋安琪, 李新. 美国加州分布式储能参与电力市场分析[J]. 机电信息, 2019(35):166-167,169. |
[27] | CHEN Dinghui, SHANG Nan, YE Chenjin. Analysis on market force mechanism of distributed pumped storage system[J]. Power Demand Side Management, 2019, 21(3):69-72. |
[9] | SONG Anqi, LI Xin. Analysis of distributed energy storage participation in electric power market in California, USA[J]. Mechanical & Electrical Information, 2019(35): 166-167,169. |
[28] | 李甲伟, 刘新龙, 梁祖雄, 等. 火电机组深度调峰控制系统优化研究[J]. 自动化仪表, 2022, 43(7):67-72. |
LI Jiawei, LIU Xinlong, LIANG Zuxiong, et al. Research on optimization of deep peak shaving control system for thermal power units[J] Automation Instrument, 2022, 43 (7):67-72. | |
[10] | 关立, 周蕾, 刘航航, 等. 独立储能电站参与电力现货市场机制及试运行分析[J]. 中国电力, 2022, 55(10):185-190. |
[29] | 张明理, 张娜, 武志锴, 等. 日前电能市场与深度调峰市场联合出清模型[J]. 中国电力, 2022, 55(2):138-144. |
[10] | GUAN Li, ZHOU Lei, LIU Hanghang, et al. Analysis on mechanism and trial operation of independent energy storage power station participating in power spot market[J]. Power of China, 2022, 55 (10):185-190. |
[29] | ZHANG Mingli, ZHANG Na, WU Zhikai, et al. Joint clearing model of day-ahead energy market and down regulation service market for accommodation of renewable energy[J]. China Power, 2022, 55(2):138-144. |
[11] |
管馨, 陈涛, 高赐威. 适应风电参与电力市场的需求侧储能负荷运行优化研究[J]. 综合智慧能源, 2022, 44(2):35-41.
doi: 10.3969/j.issn.2097-0706.2022.02.006 |
GUAN Xin, CHEN Tao, GAO Ciwei. Research on operation optimization of energy storage load on demand side for wind power market[J]. Integrated Intelligent Energy, 2022, 44(2):35-41.
doi: 10.3969/j.issn.2097-0706.2022.02.006 |
|
[12] | 赵建平, 胡家华, 李东辉, 等. 储能参与下的中长期电力市场合约转让机制灵活性研究[J]. 热力发电, 2021, 50(8):18-23. |
ZHAO Jianping, HU Jiahua, LI Donghui, et al. Study on the flexibility of contract transfer mechanism in the medium and long term power market with the participation of energy storage[J]. Thermal Power Generation, 2021, 50 (8):18-23. | |
[13] | 林立乾, 米增强, 贾雨龙, 等. 面向电力市场的分布式储能聚合参与电网调峰[J]. 储能科学与技术, 2019, 8(2):276-283. |
LI Lingan, MI Zengqiang, JIA Yulong, et al. Distributed energy storage aggregation for power grid peak shaving in a power market[J]. Energy Storage Science and Technology, 2019, 8(2):276-283. | |
[14] | 李明, 焦丰顺, 任畅翔, 等. 新一轮电改下电力辅助服务市场机制及储能参与辅助服务的经济性研究[J]. 南方能源建设, 2019, 6(3):132-138. |
LI Ming, JIAO Fengshun, REN Changxiang, et al. An economic study on the market mechanism of power auxiliary service and the participation of energy storage in auxiliary service under the new round of electricity reform[J]. Southern Energy Construction, 2019, 6(3): 132-138. | |
[15] | 陈达鹏, 荆朝霞. 美国调频辅助服务市场的调频补偿机制分析[J]. 电力系统自动化, 2017, 41(18):1-9. |
CHEN Dapeng, JING Zhaoxia. Analysis of FM compensation mechanism in US FM auxiliary Service Market[J]. Automation of Electric Power Systems, 2017, 41(18):1-9. | |
[16] | 杨水丽, 李建林, 李蓓, 等. 电池储能系统参与电网调频的优势分析[J]. 电网与清洁能源, 2013, 29(2):43-47. |
YANG Shuili, LI Jianlin, LI Bei, et al. Analysis of advantages of battery energy storage system participating in power grid frequency modulation[J]. Power Grid and Clean Energy, 2013, 29(2):43-47. | |
[17] | 陶以彬, 薛金花, 王德顺, 等. 面向电网调峰调频的储能电站综合性能评价[J]. 电源技术, 2021, 45(6):764-767. |
TAO Yibin, XUE Jinhua, WANG Deshun, et al. Comprehensive performance evaluation of energy storage power station oriented to power grid peak and frequency modulation[J]. Power Sources Technology, 2021, 45(6):764-767. | |
[18] | 陈中飞, 荆朝霞, 陈达鹏, 等. 美国调频辅助服务市场的定价机制分析[J]. 电力系统自动化, 2018, 42(12):1-10. |
CHEN Zhongfei, JING Zhaoxia, CHEN Dapeng, et al. Analysis on Pricing mechanism of FM auxiliary service market in the United States[J]. Automation of Electric Power Systems, 2018, 42(12):1-10. | |
[19] | 刘国静, 李冰洁, 胡晓燕, 等. 澳大利亚储能相关政策与电力市场机制及对我国的启示[J]. 储能科学与技术, 2022, 11(7):2332-2343. |
LIU Guojing, LI Bingjie, HU Xiaoyan, et al. Energy storage Policy in Australia and power market mechanism and enlightenment to our country[J]. Energy storage Science and Technology, 2022, 11(7):2332-2343. | |
[20] | 庄晓丹, 刘卫东, 黄为群, 等. 浙江电力现货市场环境下储能的市场交易机制与效益分析[J]. 中国电力, 2022, 55(6):80-85. |
ZHUANG Xiaodan, LIU Weidong, HUANG Weiqun, et al. Market trading mechanism and benefit analysis of energy storage in Zhejiang electric power spot market[J]. Electric Power of China, 2022, 55(6):80-85. | |
[21] | 高海翔, 董超, 孟子杰, 等. 机组储能联合系统参与调频辅助服务市场的关键技术研究与实践[J]. 广东电力, 2020, 33(6):46-52. |
GAO Haixiang, DONG Chao, MENG Zijie, et al. Research and Practice on key technologies of unit energy storage integrated system participating in frequency modulation auxiliary service market[J]. Guangdong Electric Power, 2020, 33(6):46-52. | |
[22] | 史沛然, 李彦宾, 江长明. 第三方独立主体参与华北电力调峰市场规则设计与实践[J]. 电力系统自动化, 2021, 45(5):168-174. |
SHI Peiran, LI Yanbin, JIANG Changming. The design and practice of peak regulating market rules of electric power in North China[J]. Automation of Electric Power Systems, 2021, 45(5):168-174. | |
[23] | 宁剑, 江长明, 张哲, 等. 可调节负荷资源参与电网调控的思考与技术实践[J]. 电力系统自动化, 2020, 44(17):1-8. |
NING Jing, JIANG Changming, ZHANG Zhe, et al. Adjustable load resources to participate in power grid control thinking and technology practice[J]. Automation of electric power systems, 2020, 44 (17):1-8. | |
[24] | 林阿竹, 柯清辉, 江岳文. 独立储能参与调频辅助服务市场机制设计[J]. 电力自动化设备, 2022, 42(12):26-34. |
LIN Azhu, KE Qinghui, JIANG Yuewen. Independent energy storage participating in frequency modulation auxiliary service market mechanism design[J]. Electric Power Automation Equipment, 2022, 42(12):26-34. | |
[25] | 李博嵩, 王旭, 蒋传文, 等. 广泛负荷聚集商市场策略建模及风险效益分析[J]. 电力系统自动化, 2018, 42(16):119-126. |
LI Bosong, WANG Xu, JIANG Chuanwen, et al. Wide load gather dealer market strategy modeling and risk benefit analysis[J]. Automation of Electric Power Systems, 2018, 42(16):119-126. | |
[26] | 李翔宇, 赵冬梅. 计及可调资源动态特性的虚拟电厂多级优化配置[J]. 电力系统自动化, 2020, 44(13):17-24. |
LI Xiangyu, ZHAO Dongmei. Meter and dynamic characteristics of adjustable resources multilevel optimization configuration of virtual power plant[J]. Automation of Electric Power Systems, 2020, 44 (13):17-24. | |
[27] | 陈定会, 尚楠, 叶承晋. 分布式抽水蓄能系统的市场力机理分析[J]. 电力需求侧管理, 2019, 21(3):69-72. |
CHEN Dinghui, SHANG Nan, YE Chenjin. Analysis on market force mechanism of distributed pumped storage system[J]. Power Demand Side Management, 2019, 21(3):69-72. | |
[28] | 李甲伟, 刘新龙, 梁祖雄, 等. 火电机组深度调峰控制系统优化研究[J]. 自动化仪表, 2022, 43(7):67-72. |
LI Jiawei, LIU Xinlong, LIANG Zuxiong, et al. Research on optimization of deep peak shaving control system for thermal power units[J] Automation Instrument, 2022, 43 (7):67-72. | |
[29] | 张明理, 张娜, 武志锴, 等. 日前电能市场与深度调峰市场联合出清模型[J]. 中国电力, 2022, 55(2):138-144. |
ZHANG Mingli, ZHANG Na, WU Zhikai, et al. Joint clearing model of day-ahead energy market and down regulation service market for accommodation of renewable energy[J]. China Power, 2022, 55(2):138-144. |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[3] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[4] | WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems [J]. Integrated Intelligent Energy, 2024, 46(7): 1-11. |
[5] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[6] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[7] | HUANG Xiaofan, LI Jiarui, LIU Hui, TANG Xiaoping, WANG Ziyao, WANG Tong. Comprehensive benefit analysis on the cascade utilization of a power battery system [J]. Integrated Intelligent Energy, 2024, 46(7): 63-73. |
[8] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
[9] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[10] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[11] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[12] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[13] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[14] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[15] | SU Panpan, WANG Xuetao, XING Lili, LI Haojie, LIU Mengjie. Research progress on preparation of liquid fuels by catalytic pyrolysis of pretreated biomass [J]. Integrated Intelligent Energy, 2024, 46(3): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||