综合智慧能源

• •    

基于评价因子重构与DECN-BiGRU的海岛微电网负荷预测

梁富光, 马忠强   

  1. 国网福建省电力有限公司宁德供电公司, 福建 352000 中国
  • 收稿日期:2025-04-16 修回日期:2025-08-05

Load Forecasting for Island Microgrids Using Evaluation Factor-Based Reconstruction and DECN-BiGRU

  1. , 352000, China
  • Received:2025-04-16 Revised:2025-08-05

摘要: 针对海岛微电网负荷强非线性、非平稳性及多源耦合难题,本文提出一种基于评价因子重构的鲁棒经验模态分解结合细节增强卷积网络与双向门控循环单元(REMD-DECN-BiGRU)的负荷预测方法。首先构建数据预处理框架:通过滑动窗口Z-score法清洗异常数据,融合Spearman、Pearson和Kendall相关性系数筛选关键气象因子,利用REMD将非平稳负荷序列分解为多尺度本征模态函数(IMFs),并基于样本熵(复杂度)和过零率(频率特性)构建评价因子,重构关键模态分量以保留多时间尺度特征并去除噪声。预测模型中,DECN通过多方向差分卷积提取局部时序差异特征,BiGRU捕捉序列双向时间依赖,结合多任务学习优化多元负荷的耦合关系。通过福建宁德福鼎台山岛微电网2022年逐小时实测数据验证,所提模型在短期负荷预测中表现优异:相较于未分解模型,平均绝对百分比误差(MAPE)从2.27%降至1.18%,平均绝对误差(MAE)从14.69kW降至7.37kW,均方根误差(RMSE)从21.60kW降至9.69kW。与单一DECN或BiGRU模型相比,基于评价因子重构的多模态特征融合与双向时序建模方法通过“局部细节提取-全局时序建模”的优势互补,能够有效解决海岛微电网负荷预测中的复杂非线性问题,为微电网电力调度、资源优化配置及稳定运行提供了可靠的技术支撑。

关键词: 海岛微电网, 负荷预测, 鲁棒经验模态分解, 细节增强卷积网络, 双向门控循环单元, 评价因子重构, 多任务学习

Abstract: A load forecasting method based on evaluation factor reconstruction using Robust Empirical Mode Decomposition (REMD) combined with Detail-Enhanced Convolutional Network (DECN) and Bidirectional Gated Recurrent Unit (BiGRU) is proposed for the complex characteristics of strong nonlinearity, non-stationarity, and multi-source coupling in island microgrid loads. Firstly, abnormal data are cleaned using a sliding window Z-score method, and key meteorological factors are screened by integrating Spearman, Pearson, and Kendall correlation coefficients. REMD is used to suppress mode mixing and decompose load sequences into multi-scale Intrinsic Mode Functions (IMFs). Evaluation factors are constructed based on sample entropy (complexity) and zero-crossing rate (frequency characteristics) to reconstruct critical components, removing noise and retaining multi-time-scale features. In the prediction model, DECN extracts local temporal difference features, BiGRU captures bidirectional temporal dependencies, and multi-task learning optimizes the coupling relationships of multiple loads. Validation with real data from the Taishan Island microgrid in Fuding, Ningde, Fujian, shows that the proposed model reduces the Mean Absolute Percentage Error (MAPE) to 1.18%, Mean Absolute Error (MAE) to 7.37 kW, and Root Mean Square Error (RMSE) to 9.69 kW compared with single DECN, BiGRU, and undecomposed models, significantly improving prediction accuracy and robustness in complex environments. This study provides an effective solution for accurate load forecasting and optimal power resource scheduling in island microgrids.

Key words: island microgrid, load forecasting, Robust Empirical Mode Decomposition, Detail-Enhanced Convolutional Network, Bidirectional Gated Recurrent Unit, evaluation factor reconstruction, multi-task learning