综合智慧能源

• •    

基于双重特征处理的园区综合能源系统供热负荷预测研究

薛东, 徐静静, 江婷, 王晓海, 徐聪   

  1. 中国华电科工集团有限公司, 北京 100160 中国
  • 收稿日期:2025-06-09 修回日期:2025-07-22
  • 基金资助:
    新疆维吾尔自治区重大科技专项(2022A1001-3)

Integrated energy system for parks based on double feature processing research on heat load prediction

XUE Dong, XU Jingjing, JIANG Ting, WANG Xiaohai, XU Cong   

  1. , China Huadian Engineering Company Limited 100160, China
  • Received:2025-06-09 Revised:2025-07-22
  • Supported by:
    Major Science and Technology Projects of Xinjiang Uygur Autonomous Region(2022A1001-3)

摘要: 针对园区综合能源系统供热负荷受多能流影响以及预测模型特征提取能力不足的问题,本文提出一种基于集成改进型自适应白噪声完备集成经验模态分解(ICEEMDAN)与多变量相空间重构(MPSR)的双重特征处理热负荷预测模型。首先,运用ICEEMDAN法将热负荷时间序列分解为不同频率的模态分量,并通过计算样本熵值进行分量重构;其次,利用C-C法确定重构后的热负荷分量及其它输入特征序列的最佳延迟时间和嵌入维数,以此组成不同频率下的多变量相空间重构数据集;最后,将各数据集分别输入到经算数优化算法优化参数后的双向长短时记忆神经网络(BiLSTM)模型中,并将预测结果叠加后得到最终的热负荷预测值。案例结果表明,与其它模型对比,所提方法取得了良好的预测效果。

关键词: 模态分解, 多变量相空间重构, 热负荷预测, 双向长短时记忆神经网络, 园区综合能源系统

Abstract: Aiming at the problem that the heat load of the park-level integrated energy system is affected by multi-energy flow and the feature extraction capability of the prediction model is insufficient, this paper proposes a dual feature processing heat load prediction model integrating the improved Complete Ensemble Empirical Mode Decomposition with Adaptive White Noise (ICEEMDAN) and Multivariate Phase Space Reconstruction (MPSR). First, the heat load time series are decomposed into modal components of different frequencies by ICEEMDAN method, and the component reconstruction is carried out by calculating the entropy value of the samples; second, the C-C method is used to determine the optimal delay time and embedding dimensions of the reconstructed heat load components and other input feature sequences, and to construct the multivariate phase-space reconstructed datasets under the different frequencies of the heat load components; finally, each dataset is inputted into a bidirectional long short-term memory neural network (BiLSTM) model with optimized parameters by an arithmetic optimization algorithm, and the prediction results were superposed to get the ultimate heat load prediction value. The case results show that compared with other models, the proposed method has good prediction results.

Key words: mode decomposition, multivariate phase space reconstruction, heat load prediction, bidirectional long short-term memory, park-level integrated energy system