华电技术 ›› 2021, Vol. 43 ›› Issue (11): 97-109.doi: 10.3969/j.issn.1674-1951.2021.11.012
收稿日期:
2021-07-14
修回日期:
2021-08-14
出版日期:
2021-11-25
通讯作者:
* 王随林(1956—),女,内蒙古鄂尔多斯人,教授,博士生导师,博士,从事建筑用能系统节能与能源高效利用、余热深度回收利用方面的研究(E-mail: suilinwang@buce.edu.cn)。作者简介:
鲁军辉(1989—),男,河北唐山人,讲师,博士,从事碳捕集与封存及利用中的传热传质方面的研究(E-mail: lujunhui@bucea.edu.cn)。
基金资助:
LU Junhui(), WANG Suilin*(
), TANG Jinjing, REN Kexin
Received:
2021-07-14
Revised:
2021-08-14
Published:
2021-11-25
摘要:
碳捕集与封存(CCS)及利用是实现CO2近零排放和碳中和目标的重要途径,但碳捕集成本和能耗的增加,使得系统能效降低。低能耗碳捕集技术的创新发展和高效可再生能源辅助碳捕集技术,是降低碳捕集能耗和提高系统能效的重要路径。总结了可再生能源与余热及其协同辅助碳捕集技术的类型和发展,综述分析了可再生能源中太阳能、地热能、风能、生物质能和余热以及多能耦合辅助碳捕集技术的最新进展及面临的主要问题,展望了未来利用可再生能源和余热辅助碳捕集技术的发展趋势。研究表明,随着可再生能源与余热开发利用技术的创新与发展,碳捕集成本降低的同时系统能效得到提高;综合利用和匹配太阳能制冷、热、电、光和化学转化辅助碳捕集技术,高效利用太阳能的潜力更大;可再生能源与余热及多能耦合辅助碳捕集,需重点研究工艺匹配、能量梯级优化利用,且综合评价与指标体系有待完善。
中图分类号:
鲁军辉, 王随林, 唐进京, 任可欣. 可再生能源与余热协同辅助碳捕集技术研究现状与展望[J]. 华电技术, 2021, 43(11): 97-109.
LU Junhui, WANG Suilin, TANG Jinjing, REN Kexin. Review and prospects of carbon capture technology assisted by renewable energy,waste heat and combination of them[J]. Huadian Technology, 2021, 43(11): 97-109.
[1] |
YU J, YANG T, DING T, et al. New normal characteristics show in China's energy footprints and carbon footprints[J]. Science of The Total Environment, 2021, 785.DOI: 10.1016/j.scitotenv.2021.147210.
doi: 10.1016/j.scitotenv.2021.147210 |
[2] |
SUN W, REN C. The impact of energy consumption structure on China's carbon emissions:Taking the Shannon-Wiener index as a new indicator[J]. Energy Reports, 2021, 7:2605-2614.
doi: 10.1016/j.egyr.2021.04.061 |
[3] |
JIA A, HE D, WEI Y, et al. Predictions on natural gas development trend in China for the next fifteen years[J]. Journal of Natural Gas Geoscience, 2021, 6:67-78.
doi: 10.1016/j.jnggs.2021.04.005 |
[4] |
WANG F, SUN X, REINER D M, et al. Changing trends of the elasticity of China's carbon emission intensity to industry structure and energy efficiency[J]. Energy Economics, 2020, 86.DOI: 10.1016/j.eneco.2020.104679.
doi: 10.1016/j.eneco.2020.104679 |
[5] |
ZHAO G, YU B, AN R, et al. Energy system transformations and carbon emission mitigation for China to achieve global 2 ℃ climate target[J]. Journal of Environmental Management, 2021, 292.DOI: 10.1016/j.jenvman.2021.112721.
doi: 10.1016/j.jenvman.2021.112721 |
[6] |
YANG H, LI X, MA L, et al. Using system dynamics to analyse key factors influencing China's energy-related CO2 emissions and emission reduction scenarios[J]. Journal of Cleaner Production, 2021.DOI: 10.1016/j.jclepro.2021.128811.
doi: 10.1016/j.jclepro.2021.128811 |
[7] |
QI Y, STERN N, HE J K, et al. The policy-driven peak and reduction of China's carbon emissions[J]. Advances in Climate Change Research, 2020, 11(2):65-71.
doi: 10.1016/j.accre.2020.05.008 |
[8] |
FIGUEROA J D, FOUT T, PLASYNSKI S, et al. Advances in CO2 capture technology—The US department of energy's carbon sequestration program[J]. International Journal of Greenhouse Gas Control, 2008, 2(1):9-20.
doi: 10.1016/S1750-5836(07)00094-1 |
[9] |
KENARSARI S D, YANG D, JIANG G, et al. Review of recent advances in carbon dioxide separation and capture[J]. Rsc Advances, 2013, 3(45):22739-22773.
doi: 10.1039/c3ra43965h |
[10] |
FU W, WAND L, YANG Y. Optimal design for double reheat coal-fired power plants with post-combustion CO2 capture:A novel thermal system integration with a carbon capture turbine[J]. Energy, 2021, 221.DOI: 10.1016/j.energy.2021.119838.
doi: 10.1016/j.energy.2021.119838 |
[11] |
BRAVO J, DRAPANAUSKAITE D, SARUNAC N, et al. Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration[J]. Fuel, 2021, 283.DOI: 10.1016/j.fuel.2020.118940.
doi: 10.1016/j.fuel.2020.118940 |
[12] |
SULTAN H, QUACH T Q, MUHAMMAD H A, et al. Advanced post combustion CO2 capture process—A systematic approach to minimize thermal energy requirement[J]. Applied Thermal Engineering, 2021, 184.DOI: 10.1016/j.applthermaleng.2020.116285.
doi: 10.1016/j.applthermaleng.2020.116285 |
[13] |
STANKEWITZ C, FAHLENKAMP H. Integration of a subsequent CO2 scrubbing in the coal-fired power plant process[J]. Energy Procedia, 2011, 4:1395-1402.
doi: 10.1016/j.egypro.2011.02.004 |
[14] |
PFAFF I, OEXMANN J, KATHER A. Optimised integration of post-combustion CO2 capture process in greenfield power plants[J]. Energy, 2010, 35(10):4030-4041.
doi: 10.1016/j.energy.2010.06.004 |
[15] | 韩文科, 杨玉峰, 苗韧, 等. 当前全球碳捕集与封存 (CCS)技术进展及面临的主要问题[J]. 中国能源, 2009, 31(10):5-6. |
HAN Wenke, YANG Yufeng, MIAO Ren, et al. Current global carbon capture and storage(CCS) technology progress and major problems[J]. China Energy, 2009, 31(10):5-6. | |
[16] | 常世彦, 郑丁乾, 付萌. 2 ℃/1.5 ℃温控目标下生物质能结合碳捕集与封存技术(BECCS)[J]. 全球能源互联网, 2019, 2(3):277-287. |
CHANG Shiyan, ZHENG Dingqian, FU Meng. Bioenergy with carbon capture and storage(BECCS) in the pursuit of the 2 ℃ /1.5 ℃ target[J]. Journal of Global Energy Interconnection, 2019, 2(3):277-287. | |
[17] | 赵睿恺, 邓帅, 赵力, 等. 太阳能辅助碳捕集:适用技术、性能比较和发展趋势[J]. 化工进展, 2016, 35(1):285-293. |
ZHAO Ruikai, DENG Shuai, ZHAO Li, et al. Solar-assisted carbon capture:Technology,performance comparison and development trend[J]. Chemical Industry and Engineering Progress, 2016, 35(1):285-293. | |
[18] |
ZHAO R, DENG S, ZHAO L, et al. Energy-saving pathway exploration of CCS integrated with solar energy:Literature research and comparative analysis[J]. Energy Conversion and Management, 2015, 102:66-80.
doi: 10.1016/j.enconman.2015.01.018 |
[19] |
SAGHAFIFAR M, GABRA S. A critical overview of solar assisted carbon capture systems:Is solar always the solution?[J]. International Journal of Greenhouse Gas Control, 2020, 92.DOI: 10.1016/j.ijggc.2019.102852.
doi: 10.1016/j.ijggc.2019.102852 |
[20] | 骆永国. 基于热泵技术的MEA法CO2捕集系统模拟分析[D]. 济南:山东科技大学, 2011. |
[21] |
YE X, DONG Z, LU J, et al. Thermoeconomic evaluation of double-reheat coal-fired power units with carbon capture and storage and waste heat recovery using organic Rankine cycle[J]. International Journal of Greenhouse Gas Control, 2021, 105.DOI: 10.1016/j.ijggc.2020.103247.
doi: 10.1016/j.ijggc.2020.103247 |
[22] | 谭雨亭, 赵力, 鲍军江, 等. 有机朗肯循环太阳能热发电辅助燃煤电厂CO2捕集系统技术经济性分析[J]. 机械工程学报, 2014, 50(20):151-156. |
TAN Yuting, ZHAO Li, BAO Junjiang, et al. Techno-economic study of carbon capture from coal-fired power plant using MEA assisted by solar organic rankine cycle for power generation[J]. Journal of Mechanical Engineering, 2014, 50(20):151-156. | |
[23] |
ZHAO L, ZHAO R, DENG S, et al. Integrating solar Organic Rankine Cycle into a coal-fired power plant with amine-based chemical absorption for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2014, 31:77-86.
doi: 10.1016/j.ijggc.2014.09.025 |
[24] |
MOSAFFA A H, FARSHI L G. Novel post combustion CO2 capture in the coal-fired power plant employing a transcritical CO2 power generation and low temperature steam upgraded by an absorption heat transformer[J]. Energy Conversion and Management, 2020, 207.DOI: 10.1016/j.enconman.2020.112542.
doi: 10.1016/j.enconman.2020.112542 |
[25] |
ZHAO R, ZHAO L, DENG S, et al. Techno-economic study of solar-assisted post-combustion carbon capture system integrated with desalination[J]. Energy Procedia, 2014, 61:1614-1617.
doi: 10.1016/j.egypro.2014.12.306 |
[26] |
ZHAO R, LIU L, ZHAO L, et al. Techno-economic analysis of carbon capture from a coal-fired power plant integrating solar-assisted pressure-temperature swing adsorption(PTSA)[J]. Journal of Cleaner Production, 2019, 214:440-451.
doi: 10.1016/j.jclepro.2018.12.316 |
[27] |
CHEN B, DENG S, ZHAO L, et al. Performance analysis of solar-assisted CO2 adsorption capture system based on dynamic simulation[J]. Solar Energy, 2020, 209:628-645.
doi: 10.1016/j.solener.2020.09.017 |
[28] | ZHAO R, ZHAO L, WANG S, et al. Solar-assisted pressure-temperature swing adsorption for CO2 capture:Effect of adsorbent materials[J]. Solar Energy Materials and Solar Cells, 2018, 185:494-504. |
[29] |
LI Y, ZHANG N, CAI R. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming[J]. Energy, 2013, 58:36-44.
doi: 10.1016/j.energy.2013.02.005 |
[30] | GIACONIA A. Hydrogen production by solar steam reforming as a fuel decarbonization route[J]. Green Energy and Technology, 2013, 137:109-121. |
[31] |
LI S, SUI J, JIN H, et al. Full chain energy performance for a combined cooling,heating and power system running with methanol and solar energy[J]. Applied Energy, 2013, 112:673-681.
doi: 10.1016/j.apenergy.2012.11.018 |
[32] | PAK P S, KOSUGI T. Characteristics and economic evaluation of CO2‐capturing power generation systems using solar thermal energy and gasified coal[J]. Electrical Engineering in Japan, 2002, 138(1):1-13. |
[33] |
GOU C, CAI R, HONG H. A novel hybrid oxy-fuel power cycle utilizing solar thermal energy[J]. Energy, 2007, 32(9):1707-1714.
doi: 10.1016/j.energy.2006.12.001 |
[34] |
KHALILPOUR R, MILANI D, QADIR A, et al. A novel process for direct solvent regeneration via solar thermal energy for carbon capture[J]. Renewable Energy, 2017, 104:60-75.
doi: 10.1016/j.renene.2016.12.001 |
[35] |
MILANI D, LUU M T, NELSON S, et al. Analysis for a solar stripper design for carbon capture under transient conditions[J]. International Journal of Heat and Mass Transfer, 2021, 166.DOI: 10.1016/j.ijheatmasstransfer.2020.120799.
doi: 10.1016/j.ijheatmasstransfer.2020.120799 |
[36] |
MILANI D, NELSON S, LUU M T, et al. Tailored solar field and solvent storage for direct solvent regeneration:A novel approach to solarise carbon capture technology[J]. Applied Thermal Engineering, 2020, 171.DOI: 10.1016/j.applthermaleng.2020.115119.
doi: 10.1016/j.applthermaleng.2020.115119 |
[37] |
WANG F, ZHAO J, LI H, et al. Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors[J]. Applied Energy, 2017, 185:1471-1480.
doi: 10.1016/j.apenergy.2016.02.040 |
[38] |
WANG J, ZHAO J, DENG S, et al. Integrated assessment for solar-assisted carbon capture and storage power plant by adopting resilience thinking on energy system[J]. Journal of Cleaner Production, 2019, 208:1009-1021.
doi: 10.1016/j.jclepro.2018.10.090 |
[39] |
ZHAI R, QI J, ZHU Y, et al. Novel system integrations of 1 000 MW coal-fired power plant retrofitted with solar energy and CO2 capture system[J]. Applied Thermal Engineering, 2017, 125:1133-1145.
doi: 10.1016/j.applthermaleng.2017.07.093 |
[40] |
WANG J, SUN T, ZENG X, et al. Feasibility of solar-assisted CO2 capture power plant with flexible operation:A case study in China[J]. Applied Thermal Engineering, 2021, 182.DOI: 10.1016/j.applthermaleng.2020.116096.
doi: 10.1016/j.applthermaleng.2020.116096 |
[41] |
TREGAMBI C, BARESCHINO P, MANCUSI E, et al. Modelling of a concentrated solar power-photovoltaics hybrid plant for carbon dioxide capture and utilization via calcium looping and methanation[J]. Energy Conversion and Management, 2021, 230.DOI: 10.1016/j.enconman.2020.113792.
doi: 10.1016/j.enconman.2020.113792 |
[42] | 刘一楠, 邓帅, 赵睿恺, 等. 新型太阳能辅助碳捕集技术进展综述与性能比较[J]. 化工进展, 2016, 35(12):3848-3857. |
LIU Yinan, DENG Shuai, ZHAO Ruikai, et al. Progress overview and performance comparison of innovative solar-assisted carbon capture technologies[J]. Chemical Industry and Engineering Progress, 2016, 35(12):3848-3857. | |
[43] |
LIU Y, DENG S, ZHAO R, et al. Energy-saving pathway exploration of CCS integrated with solar energy:A review of innovative concepts[J]. Renewable and Sustainable Energy Reviews, 2017, 77:652-669.
doi: 10.1016/j.rser.2017.04.031 |
[44] |
ABUELGASIM S, WANG W, ABDALAZEEZ A. A brief review for chemical looping combustion as a promising CO2 capture technology:Fundamentals and progress[J]. Science of The Total Environment, 2020.DOI: 10.1016/j.scitotenv.2020.142892.
doi: 10.1016/j.scitotenv.2020.142892 |
[45] |
WANG F, DENG S, ZHAO J, et al. Performance and economic assessments of integrating geothermal energy into coal-fired power plant with CO2 capture[J]. Energy, 2017, 119:278-287.
doi: 10.1016/j.energy.2016.12.029 |
[46] |
WANG F, DENG S, ZHAO J, et al. Integrating geothermal into coal-fired power plant with carbon capture:A comparative study with solar energy[J]. Energy Conversion and Management, 2017, 148:569-582.
doi: 10.1016/j.enconman.2017.06.016 |
[47] |
DAVIDSON C L, HELDEBRANT D J, BEARDEN M D, et al. Enabling CCS via low-temperature geothermal energy integration for fossil-fired power generation[J]. Energy Procedia, 2017, 114:6448-6454.
doi: 10.1016/j.egypro.2017.03.1781 |
[48] | 王甫. 太阳能中低温集热耦合二氧化碳捕集的理论与实验研究[D]. 天津:天津大学, 2017. |
[49] |
RANDOLPH J B, SAAR M O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable,porous geologic formations:Implications for CO2 sequestration[J]. Energy Procedia, 2011, 4:2206-2213.
doi: 10.1016/j.egypro.2011.02.108 |
[50] | 谢和平, 熊伦, 谢凌志, 等. 中国CO2地质封存及增强地热开采一体化的初步探讨[J]. 岩石力学与工程学报, 2014, 33(S1):3077-3086. |
XIE Heping, XIONG Lun, XIE Lingzhi, et al. A preliminary study of CO2 geological storage and enhanced geothermal exploitation integration in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1):3077-3086. | |
[51] |
PRUESS K. Enhanced geothermal systems(EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4):351-367.
doi: 10.1016/j.geothermics.2006.08.002 |
[52] | 徐慧. 基于风光水储互补发电系统的火电及碳捕集优化调度研究[D]. 昆明:昆明理工大学, 2020. |
[53] | 周任军, 孙洪, 唐夏菲, 等. 双碳量约束下风电-碳捕集虚拟电厂低碳经济调度[J]. 中国电机工程学报, 2018, 38(6):1675-1683,1904. |
ZHOU Renjun, SUN Hong, TANG Xiafei, et al. Low-carbon economic dispatch based on virtual power plant made up of carbon capture unit and wind power under double carbon constraint[J]. Proceedings of the CSEE, 2018, 38(6):1675-1683,1904. | |
[54] | 周任军, 邓子昂, 徐健, 等. 碳循环利用的风电-P2G-碳捕集-燃气热电虚拟电厂优化运行[J/OL]. 中国电力:1-9.(2020-03-13)[2021-06-24]. http://kns.cnki.net/kcms/detail/11.3265.TM.20200313.1529.010.html. |
ZHOU Renjun, DENG Ziang, XU Jian, et al. Optimization operation of wind power-P2G-carbon capture-gas fired thermoelectric virtual power plant with carbon cycle utilization[J/OL]. Electric Power:1-9.(2020-03-13)[2021-06-24]. http://kns.cnki.net/kcms/detail/11.3265.TM.20200313.1529.010.html. | |
[55] | 孙洪, 胡剑宇, 颜勇, 等. 基于风电-碳捕集虚拟电厂的环保经济调度[J]. 现代电力, 2017, 34(4):21-26. |
SUN Hong, HU Jianyu, YAN Yong, et al. Environmental economic dispatch based on virtual power virtual power plant with carbon capture unit and wind power[J]. Modern Electric Power, 2017, 34(4):21-26. | |
[56] | 仲悟之, 黄思宇, 崔杨, 等. 考虑源荷不确定性的风电-光热-碳捕集虚拟电厂协调优化调度[J]. 电网技术, 2020, 44(9):3424-3432. |
ZHONG Wuzhi, HUANG Siyu, CUI Yang, et al. W-S-C capture coordination in virtual power plant considering source-load uncertainty[J]. Power System Technology, 2020, 44(9):3424-3432. | |
[57] | 彭元, 娄素华, 吴耀武, 等. 考虑储液式碳捕集电厂的含风电系统低碳经济调度[J/OL]. 电工技术学报:1-9.(2021-04-01)[2021-06-24]. https://doi.org/10.19595/j.cnki.1000-6753.tces.201249. |
PENG Yuan, LOU Suhua, WU Yaowu, et al. Low-carbon economic dispatch of power system with wind power considering solvent-storaged carbon capture power plant[J/OL]. Transactions of China Electrotechnical Society:1-9.(2021-04-01)[2021-06-24]. https://doi.org/10.19595/j.cnki.1000-6753.tces.201249. | |
[58] |
BANDYOPADHYAY R, PATIÑO-ECHEVERRI D. Alternative energy storage for wind power:Coal plants with amine-based CCS[J]. Energy Procedia, 2014, 63:7337-7348.
doi: 10.1016/j.egypro.2014.11.770 |
[59] |
BANDYOPADHYAY R, PATIÑO-ECHEVERRI D. An alternate wind power integration mechanism:Coal plants with flexible amine-based CCS[J]. Renewable Energy, 2016, 85:704-713.
doi: 10.1016/j.renene.2015.07.025 |
[60] |
KANG C A, BRANDT A R, DURLOFSKY L J. Optimal operation of an integrated energy system including fossil fuel power generation,CO2 capture and wind[J]. Energy, 2011, 36(12):6806-6820.
doi: 10.1016/j.energy.2011.10.015 |
[61] |
KHORSHIDI Z, HO M T, WILEY D E. Techno-economic evaluation of using biomass-fired auxiliary units for supplying energy requirements of CO2 capture in coal-fired power plants[J]. International Journal of Greenhouse Gas Control, 2015, 32:24-36.
doi: 10.1016/j.ijggc.2014.10.017 |
[62] |
CARAPELLUCCI R, GIORDANO L, VACCARELLI M. Analysis of CO2 post-combustion capture in coal-fired power plants integrated with renewable energies[J]. Energy Procedia, 2015, 82:350-357.
doi: 10.1016/j.egypro.2015.11.801 |
[63] |
CARAPELLUCCI R, GIORDANO L, VACCARELLI M. The use of biomass to reduce power derating in combined cycle power plants retrofitted with post-combustion CO2 capture[J]. Energy Conversion and Management, 2016, 107:52-59.
doi: 10.1016/j.enconman.2015.07.049 |
[64] | 邢晨健, 钱煜, 周燃, 等. 太阳能聚光光伏-余热碳捕集利用方式分析[J]. 华电技术, 2020, 42(4):84-88. |
XING Chenjian, QIAN Yu, ZHOU Ran, et al. Analysis of utilization modes combining concentrating photovoltaic power generation and photovoltaic residual heat driving carbon capture[J]. Huadian Technology, 2020, 42(4):84-88. | |
[65] | 钱煜, 颜爱晶, 邢晨健, 等. 槽式太阳能聚光集热-燃煤发电碳捕集系统研究[J]. 华电技术, 2021, 43(6):61-68. |
QIAN Yu, YAN Aijing, XING Chenjian, et al. Research on a carbon capture system coupling parabolic trough solar collectors with coal-fired power generating units[J]. Huadian Technology, 2021, 43(6):61-68. | |
[66] | 邢晨健, 王瑞林, 赵传文. 燃煤电站与光伏余热辅助胺法脱碳系统集成[J]. 洁净煤技术, 2021, 27(2):170-179. |
XING Chenjian, WANG Ruilin, ZHAO Chuanwen. Integration of coal-fired power station and photovoltaic waste heat assisted amine decarbonization system[J]. Clean Coal Technology, 2021, 27(2):170-179. | |
[67] | 赵睿恺, 赵力, 赵军. 面向碳中和目标的变温吸附碳捕集效能与技术经济性分析[J]. 华电技术, 2021, 43(6):41-46. |
ZHAO Ruikai, ZHAO Li, ZHAO Jun. Effectiveness and techno-economic analysis on temperature swing adsorption for CO2 capture targeting at carbon neutrality[J]. Huadian Technology, 2021, 43(6):41-46. | |
[68] | 谭雨亭, 赵力. 水泥窑余热发电辅助碳捕集系统分析[J]. 工程热物理学报, 2015, 36(2):259-264. |
TAN Yuting, ZHAO Li. Study of carbon capture from cement plant combined with waste heat recovery for power generation[J]. Journal of Engineering Thermophysics, 2015, 36(2):259-264. | |
[69] | 常超, 杨阳, 高腾飞, 等. 一种烟气余热利用型碳捕集方法和系统:CN112263890A[P]. 2021-01-26. |
[70] | 阮雪华, 辛月, 贺高红, 等. 一种梯级利用烟气余热的二氧化碳捕集液化工艺:CN106039960A[P]. 2016-10-26. |
[71] | 王海文, 张俊杰, 朱锴锴, 等. 火电厂循环水余热在MEA溶剂再生中的节能分析[J]. 上海电力学院学报, 2017, 33(2):124-128. |
WANG Haiwen, ZHANG Junjie, ZHU Kaikai, et al. The energy-saving analysis of waste heat from circulating water used for the solvent regeneration of MEA in power plant[J]. Journal of Shanghai University of Electric Power, 2017, 33(2):124-128. | |
[72] | 谢玮祎, 陈晓平, 马吉亮, 等. 基于钠基吸附剂的烟气脱碳系统余热利用研究[J]. 化工进展, 2020, 39(2):720-727. |
XIE Weiyi, CHEN Xiaoping, MA Jiliang, et al. Waste heat recovery from sodium-based CO2 capture process in coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2020, 39(2):720-727. | |
[73] |
KURTULUS K, COSKUN A, AMEEN S, et al. Thermoeconomic analysis of a CO2 compression system using waste heat into the regenerative organic Rankine cycle[J]. Energy Conversion and Management, 2018, 168:588-598.
doi: 10.1016/j.enconman.2018.05.037 |
[74] |
TU T, LIU S, CUI Q, et al. Techno-economic assessment of waste heat recovery enhancement using multi-channel ceramic membrane in carbon capture process[J]. Chemical Engineering Journal, 2020, 400:125677.
doi: 10.1016/j.cej.2020.125677 |
[75] |
YAN S, CUI Q, TU T, et al. Membrane heat exchanger for novel heat recovery in carbon capture[J]. Journal of membrane science, 2019, 577:60-68.
doi: 10.1016/j.memsci.2019.01.049 |
[76] |
CUI Q, TU T, JI L, et al. CO2 capture cost saving through waste heat recovery using transport membrane condenser in different solvent-based carbon capture processes[J]. Energy, 2021, 216.DOI: 10.1016/j.energy.2020.119225.
doi: 10.1016/j.energy.2020.119225 |
[77] | 张力为, 甘满光, 王燕, 等. 二氧化碳捕集利用-可再生能源发电调峰耦合技术[J]. 热力发电, 2021, 50(1):24-32. |
ZHANG Liwei, GAN Manguang, WANG Yan, et al. Coupled technology of carbon dioxide capture and utilization and renewable power peak shaving[J]. Thermal Power Generation, 2021, 50(1):24-32. | |
[78] | 王甫, 赵军, 严晋跃, 等. 一种太阳能与地热能联合辅助二氧化碳捕集系统:CN105561742A[P]. 2016-05-11. |
[79] |
LICHT S. STEP(Solar Thermal Electrochemical Photo) generation of energetic molecules:A solar chemical process to end anthropogenic global warming[J]. The Journal of Physical Chemistry C, 2009, 113(36):16283-16292.
doi: 10.1021/jp9044644 |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[3] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[4] | 张立栋, 李佩, 姜铁骝, 李钦伟, 张磊, 徐峰, 孟欣. 槽式太阳能阵列挡风增速效果数值模拟[J]. 综合智慧能源, 2024, 46(6): 1-7. |
[5] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[6] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[7] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
[8] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
[9] | 李春华, 朱飙. 西北四省太阳能资源分布与长期变化趋势分析[J]. 综合智慧能源, 2024, 46(2): 75-81. |
[10] | 鲍海波, 梁浚杰, 李想. 园区供电系统广义负荷需求响应建模与分析[J]. 综合智慧能源, 2024, 46(1): 11-17. |
[11] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[12] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[13] | 张钟平, 刘亨, 谢玉荣, 赵大周, 牟敏, 陈桥. 熔盐储热技术的应用现状与研究进展[J]. 综合智慧能源, 2023, 45(9): 40-47. |
[14] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[15] | 何沭纬, 韩颖慧, 徐文斌, 张元勋, 单玉龙, 余运波. 不同能源策略下北京市私有机动车辆CO2排放系统仿真模拟[J]. 综合智慧能源, 2023, 45(8): 26-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||