综合智慧能源 ›› 2023, Vol. 45 ›› Issue (9): 40-47.doi: 10.3969/j.issn.2097-0706.2023.09.006
张钟平1(), 刘亨*(
), 谢玉荣1, 赵大周1, 牟敏1, 陈桥1
收稿日期:
2023-05-05
修回日期:
2023-06-08
出版日期:
2023-09-25
通讯作者:
* 刘亨(1997),男,在读硕士研究生,从事熔盐与新型储热技术等方面的研究,1436016642@qq.com。作者简介:
张钟平(1984),男,高级工程师,硕士,从事新型储能与综合能源等方面的工作,zhongping-zhang@chder.com。
基金资助:
ZHANG Zhongping1(), LIU Heng*(
), XIE Yurong1, ZHAO Dazhou1, MOU Min1, CHEN Qiao1
Received:
2023-05-05
Revised:
2023-06-08
Published:
2023-09-25
Supported by:
摘要:
熔盐是一种理想的储热介质,具有黏度低、蒸汽压低、热稳定性高、储热密度高等优点,因此熔盐储热技术可以广泛应用于太阳能光热发电、火力发电机组的调峰调频、供暖与余热回收利用等领域。目前对熔盐储热关键技术的研究普遍以太阳能光热发电为中心展开,针对其他场景的研究与应用不够充分。在不同的应用场景下,熔盐的工作温度区间、加热方式、关键部件的选择和系统流程的布置都有区别。概述了熔盐储热技术的优势特点与技术关键,总结了在不同场景下的研究现状和最新的应用示范,分析了目前熔盐储热技术需要加强研究的关键方面,并提出了未来的发展趋势与目标。
中图分类号:
张钟平, 刘亨, 谢玉荣, 赵大周, 牟敏, 陈桥. 熔盐储热技术的应用现状与研究进展[J]. 综合智慧能源, 2023, 45(9): 40-47.
ZHANG Zhongping, LIU Heng, XIE Yurong, ZHAO Dazhou, MOU Min, CHEN Qiao. Application and research progress of molten salt heat storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 40-47.
表1
各种储能技术的特点
储能类型 | 储能方式 | 发展现状 | 容量范围 | 优点 | 缺点 |
---|---|---|---|---|---|
机械储能 | 抽水蓄能 | 商业化 | 10 kW~100 MW | 容量大、寿命长 | 选址受限、建设周期长 |
压缩空气储能 | 商业化 | 10~100 MW | 容最大、快速响应、容量功率范围灵活 | 选址受限 | |
飞轮储能 | 商业化 | 10 kW~1 MW | 高效、寿命较长 | 自放电率高、短期储能、成本高 | |
电化学储能 | 锂离子电池 | 商业化 | 10 kW~300 MW | 能量需度高、高效率、无污染 | 成本较高 |
全钒液流电池 | 商业化早期 | 100 kW~10 MW | 充放电次数多、容量大、寿命短 | 能量密度较低 | |
钠硫电池 | 商业化 | 100 kW~10 MW | 结构紧凑、容量大、效率高 | 运行维护费用高 | |
储热 | 熔盐储热 | 商业化 | 10 kW~100 MW | 储能密度大、无污染、安全稳定,适用于大规模、长寿命系统 | 初期投资成本高,熔盐性能、关键设备待提升 |
固体储热 | 商业化 | 10 kW~100 MW | 储热能力强,温度上限高 | 换热不稳定、寿命短 | |
水储热 | 商业化 | — | 储热稳定、来源丰富、投资低 | 储热温差小、温度低 | |
电磁储能 | 超级电容器 | 研发中 | 10~100 kW | 充放电快速、高效率、寿命长 | 能量密度低、成本高 |
超导储能 | 研发中 | — | 功率大、占地小、损耗小 | 成本高、自放电率高 |
表2
近年来对熔盐储热系统耦合燃煤机组模拟的研究
作者 | 模拟软件 | 机组功率与类型 | 熔盐加热方式 | 模拟分析结果 |
---|---|---|---|---|
邹小刚等[ | Ebsilon | 350 MW燃煤 | 电加热 | 电加热熔盐系统循环热效率为33.2%,机组最低发电负荷可降至25.0%以下 |
刘金恺等[ | Matlab | 600 MW燃煤 | 电加热 | 电加热熔盐储热,释热时加热旁路给水,调峰深度17.83% |
范庆伟等[ | Ebsilon | 600 MW燃煤 | 再热蒸汽 | 储热过程中每增加1 MW储热功率,耗煤增加0.3 g/(kW·h) |
张显荣等[ | Aspenplus | 600 MW燃煤 | 再热蒸汽 | 机组新增上/下调峰容量29.25/36.50 MW,新增上/下调峰深度4.87%/6.08% |
王惠杰等[ | Aspenplus +Ebsilon | 塔式太阳能+ 660 MW燃煤 | 塔式太阳能 集热器 | 燃煤机组在80.00%~90.00%THA负荷下运行,煤耗降低率由5.76%提高到15.54% |
庞力平等[ | Thermoflow | 660 MW燃煤 | 再热蒸汽 | 储放热阶段,储热阶段的最大调峰量为6.82%,放热阶段为1.82%,明显提高了机组对负荷的响应速度 |
王坚等[ | 无 | 350 MW燃煤 | 主蒸汽+再热蒸汽 | 储能规模达到650 MW·h以上,系统综合储能效率>90.2% |
[1] | 杨水丽, 来小康, 丁涛, 等. 新型储能技术在弹性电网中的应用与展望[J]. 储能科学与技术, 2023, 12(2):515-528. |
YANG Shuili, LAI Xiaokang, DING Tao, et al. Application and prospect of new energy storage technologies in resilient power systems[J]. Energy Storage Science and Technology, 2023, 12(2):515-528. | |
[2] | 郑云平, 李明, 张艳丽, 等. 新型储能政策分析与建议[J/OL]. 储能科学与技术, 2023:1-10(2023-04-06)[2023-06-06].https://doi.org/10.19799/j.cnki.2095-4239.2023.0140. |
ZHENG Yunping, LI Ming, ZHANG Yanli, et al. Analysis and suggestions on new energy storage policy[J/OL]. Energy Storage Science and Technology, 2023:1-10(2023-04-06)[2023-06-06].https://doi.org/10.19799/j.cnki.2095-4239.2023.0140. | |
[3] |
魏小兰, 谢佩, 张雪钏, 等. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020, 71(5):2423-2431.
doi: 10.11949/0438-1157.20191541 |
WEI Xiaolan, XIE Pei, ZHANG Xuechuan, et al. Research on preparation and thermodynamic properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5):2423-2431. | |
[4] | 欧阳子区, 王宏帅, 吕清刚, 等. 煤粉锅炉发电机组深度调峰技术进展[J/OL]. 中国电机工程学报, 2023:1-22(2023-02-23)[2023-06-06].https://doi.org/10.13334/j.0258-8013.pcsee.222007. |
OUYANG Ziqu, WANG Hongshuai, QinggangLYU, et al. Research progress on deep peak shaving technology of pulverized coal-fired boiler power unit[J/OL]. Proceedings of the CSEE, 2023:1-22(2023-02-23)[2023-06-06].https://doi.org/10.13334/j.0258-8013.pcsee.222007. | |
[5] | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3):1052-1076. |
CHEN Haisheng, LI Hong, MA Wentao, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3):1052-1076. | |
[6] | 张玮灵, 古含, 章超, 等. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4):1295-1301. |
ZHANG Weiling, GU Han, ZHANG Chao, et al. Study on technical economic characteristics and development trends of compressed air energy storage[J]. Energy Storage Science and Technology, 2023, 12(4):1295-1301. | |
[7] | 马汀山, 王妍, 吕凯, 等. “双碳”目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1):136-148. |
MA Tingshan, WANG Yan, LYU Kai, et al. Research progress on flexibility transformation technology of coupled energy storage for thermal power units under the "dual-carbon" goal[J]. Proceedings of the CSEE, 2022, 42(S1):136-148. | |
[8] | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9):2772-2780. |
ZHANG Huamin. Development,cost analysis considering various durations,and advancement of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11(9):2772-2780. | |
[9] |
蒋文坤, 韩颖慧, 薛智文, 等. 多能互补能源系统中储能原理及其应用[J]. 综合智慧能源, 2022, 44(1):63-71.
doi: 10.3969/j.issn.2097-0706.2022.01.009 |
JIANG Wenkun, HAN Yinghui, XUE Zhiwen, et al. Energy storage technologies and their applications in multi-energy complementary power system[J]. Integrated Intelligent Energy, 2022, 44(1):63-71.
doi: 10.3969/j.issn.2097-0706.2022.01.009 |
|
[10] | 刘阳, 滕卫军, 谷青发, 等. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12(1):312-318. |
LIU Yang, TENG Weijun, GU Qingfa, et al. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis[J]. Energy Storage Science and Technology, 2023, 12(1):312-318. | |
[11] | 何雅玲, 严俊杰, 杨卫卫, 等. 分布式能源系统中能量的高效存储[J]. 中国科学基金, 2020, 34(3):272-280. |
HE Yaling, YAN Junjie, YANG Weiwei, et al. High efficient energy storage in distributed energy system[J]. Bulletin of National Natural Science Foundation of China, 2020, 34(3):272-280. | |
[12] |
YUAN F, HE Y L, LI M J, et al. Study on the theoretical calculation method for the effective thermal conductivity of carbon nanotube composite molten salt for solar energy application[J]. Solar Energy Materials and Solar Cells, 2022, 238:111631.
doi: 10.1016/j.solmat.2022.111631 |
[13] |
ALJAERANI H A, SAMYKANO M, SAIDUR R, et al. Nanoparticles as molten salts thermophysical properties enhancer for concentrated solar power:A critical review[J]. Journal of Energy Storage, 2021, 44:103280.
doi: 10.1016/j.est.2021.103280 |
[14] |
LI C, LI Q, LU X K, et al. Inorganic salt based shape-stabilized composite phase change materials for medium and high temperature thermal energy storage:Ingredients selection,fabrication,microstructural characteristics and development,and applications[J]. Journal of Energy Storage, 2022, 55:105252.
doi: 10.1016/j.est.2022.105252 |
[15] |
YADAV A, VERMA A, KUMAR A, et al. Recent advances on enhanced thermal conduction in phase change materials using carbon nanomaterials[J]. Journal of Energy Storage, 2021, 43:103173.
doi: 10.1016/j.est.2021.103173 |
[16] | 熊亚选, 张慧, 吴玉庭, 等. 纳米颗粒对二元硝酸盐表面张力和密度的影响[J]. 储能科学与技术, 2021, 10(4):1297-1304. |
XIONG Yaxuan, ZHANG Hui, WU Yuting, et al. Effect of nanoparticles on surface tension and density of binary nitrate[J]. Energy Storage Science and Technology, 2021, 10(4):1297-1304. | |
[17] | 武延泽, 王敏, 李锦丽, 等. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1):10-18. |
WU Yanze, WANG Min, LI Jinli, et al. Research progress in improving heat transfer and heat storage performance of molten nitrate by nanomaterials[J]. Journal of Materials Engineering, 2020, 48(1):10-18. | |
[18] |
JEONG S, JO B. Distinct behaviors of KNO3 and NaNO3 in specific heat enhancement of molten salt nanofluid[J]. The Journal of Energy Storage, 2023, 57:106209.
doi: 10.1016/j.est.2022.106209 |
[19] |
GROSU Y, ANAGNOSTOPOULOS A, BALAKIN B, et al. Nanofluids based on molten carbonate salts for high‑temperature thermal energy storage:Thermophysical properties,stability,compatibility and life cycle analysis[J]. Solar Energy Materials and Solar Cells, 2021, 220:110838.
doi: 10.1016/j.solmat.2020.110838 |
[20] |
田禾青, 周俊杰, 郭茶秀. 熔盐储热材料比热容强化的研究进展[J]. 化工进展, 2020, 39(2):584-595.
doi: 10.16085/j.issn.1000-6613.2019-0798 |
TIAN Heqing, ZHOU Junjie, GUO Chaxiu. Progress of specific heat enhancement of molten salt thermal energy storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(2):584-595.
doi: 10.16085/j.issn.1000-6613.2019-0798 |
|
[21] |
ROPER R, HARKEMA M, SABHARWALL P, et al. Molten salt for advanced energy applications:A review[J]. Annals of Nuclear Energy, 2022, 169:108924.
doi: 10.1016/j.anucene.2021.108924 |
[22] | 张灿灿, 韩松涛, 吴玉庭, 等. 硝基熔盐纳米流体在扭曲扁管内流动与换热特性[J]. 储能科学与技术, 2022, 11(11):3641-3648. |
ZHANG Cancan, HAN Songtao, WU Yuting, et al. Nitrate molten salt-based nanofluid flow and heat transfer characteristics in twisted tube[J]. Energy Storage Science and Technology, 2022, 11(11):3641-3648. | |
[23] |
ALJAERANI H A, SAMYKANO M, PANDEY A K, et al. Thermophysical properties enhancement and characterization of CuO nanoparticles enhanced HiTec molten salt for concentrated solar power applications[J]. International Communications in Heat and Mass Transfer, 2022, 132:105898.
doi: 10.1016/j.icheatmasstransfer.2022.105898 |
[24] | 王中原, 傅瑶, 邹杨, 等. 管壳式熔盐换热器折流板开孔数值分析[J]. 工程热物理学报, 2022, 43(10):2790-2797. |
WANG Zhongyuan, FU Yao, ZOU Yang, et al. Numerical analysis of baffle opening on shell and tube molten salt heat exchanger[J]. Journal of Engineering Thermophysics, 2022, 43(10):2790-2797. | |
[25] | 孙育滨, 高伟. 熔盐换热系统在化工行业的应用[J]. 广东化工, 2022, 49(11):21-23. |
SUN Yubin, GAO Wei. The application of molten salt heat exchange system in chemical industry[J]. Guangdong Chemical Industry, 2022, 49(11):21-23. | |
[26] |
YANG Y. Numerical study on heat transfer characteristics of molten salt in a flat tube with circular helical wire[J]. Applied Thermal Engineering, 2023, 227:120373.
doi: 10.1016/j.applthermaleng.2023.120373 |
[27] | 张永乐, 吴玉庭, 张灿灿, 等. 熔盐电磁感应加热器的数值模拟与分析[J]. 太阳能学报, 2021, 42(8):243-250. |
ZHANG Yongle, WU Yuting, ZHANG Cancan, et al. Numerical simulation and analysis electromagnetic induction heater for molten salt[J]. Acta Energiae Solaris Sinica, 2021, 42(8):243-250. | |
[28] |
操松林, 呼核升, 操瑞嘉, 等. 熔盐泵现状与展望[J]. 流体机械, 2019, 47(11):49-55.
doi: 10.3969/j.issn.1005-0329.2019.11.010 |
CAO Songlin, HU Hesheng, CAO Ruijia, et al. The present situation and prospect of molten salt pump[J]. Fluid Machinery, 2019, 47(11):49-55.
doi: 10.3969/j.issn.1005-0329.2019.11.010 |
|
[29] | 牛东圣, 周治, 肖斌, 等. 槽式光热电站熔盐管道系统防凝研究进展[J]. 热力发电, 2020, 49(3):1-7. |
NIU Dongsheng, ZHOU Zhi, XIAO Bin, et al. Advances in freeze protection of molten salt piping system in parabolic trough CSP plants[J]. Thermal Power Generation, 2020, 49(3):1-7. | |
[30] | 王鼎, 肖虎, 陈宇轩, 等. 基于CFD方法的熔盐储罐预热分析[J]. 华电技术, 2021, 43(7):75-81. |
WANG Ding, XIAO Hu, CHEN Yuxuan, et al. Preheating analysis on molten salt storage tank based on CFD method[J]. Huadian Technology, 2021, 43(7):75-81. | |
[31] | 杜保存, 贾凡, 郭一帆, 等. 50 MWe光热电站填充床储罐的高温蠕变与机械性能研究[J/OL]. 太原理工大学学报:1-9(2022-10-29)[2023-06-06]. https://kns.cnki.net/kcms/detail/14.1220.N.20221028.1329.002.html. |
DU Baocun, JIA Fan, GUO Yifan, et al. High temperature creep and mechanical analysis of the packed-bed thermal storage tank in 50 MWe solar power plant[J/OL]. Journal of Taiyuan University of Technology,1-9(2022-10-29)[2023-06-06]. https://kns.cnki.net/kcms/detail/14.1220.N.20221028.1329.002.html. | |
[32] |
徐玫, 王晓, 肖斌, 等. 塔式太阳能热发电系统性能模型及其仿真研究[J]. 太阳能学报, 2022, 43(2):238-245.
doi: 10.19912/j.0254-0096.tynxb.2020-0047 |
XU Mei, WANG Xiao, XIAO Bin, et al. Performance model and simulation study of solar power tower system[J]. Acta Energiae Solaris Sinica, 2022, 43(2):238-245.
doi: 10.19912/j.0254-0096.tynxb.2020-0047 |
|
[33] | 童家麟, 吕洪坤, 李汝萍, 等. 国内光热发电现状及应用前景综述[J]. 浙江电力, 2019, 38(12):25-30. |
TONG Jialin, LYU Hongkun, LI Ruping, et al. Review on status and application prospect of domestic csp generation[J]. Zhejiang Electric Power, 2019, 38(12):25-30. | |
[34] | 左芳菲, 韩伟, 姚明宇. 熔盐储能在新型电力系统中应用现状与发展趋势[J]. 热力发电, 2023, 52(2):1-9. |
ZUO Fangfei, HAN Wei, YAO Mingyu. Application status and development trend of molten salt energy storage in novel power systems[J]. Thermal Power Generation, 2023, 52(2):1-9. | |
[35] | 何志瞧, 童家麟. 太阳能光热发电现状及超临界CO2光热发电技术应用前景[J]. 华电技术, 2020, 42(4):77-83. |
HE Zhiqiao, TONG Jialin. Development status of solar thermal power generation and prospect of supercritical carbon dioxide technology applied in it[J]. Huadian Technology, 2020, 42(4):77-83. | |
[36] | 王智, 闫锐鸣, 刘亚丽, 等. 再压缩S-CO2塔式光热发电系统模拟及参数优化[J]. 汽轮机技术, 2021, 63(6):422-426. |
WANG Zhi, YAN Ruiming, LIU Yali, et al. Simulation and parameter optimization of recompression S-CO2 tower photothermal power generation system[J]. Turbine Technology, 2021, 63(6):422-426. | |
[37] | 李峻, 祝培旺, 王辉, 等. 基于高温熔盐储热的火电机组灵活性改造技术及其应用前景分析[J]. 南方能源建设, 2021, 8(3):63-70. |
LI Jun, ZHU Peiwang, WANG Hui, et al. Flexible modification technology and application prospect of thermal power unit based on high temperature molten salt heat storage[J]. Southern Energy Construction, 2021, 8(3):63-70. | |
[38] | 毛翠骥, 余雄江, 徐进良, 等. 耦合熔融盐储热的火电机组灵活调峰系统关键技术研究进展[J]. 热力发电, 2023, 52(2):10-22. |
MAO Cuiji, YU Xiongjiang, XU Jinliang, et al. Research progress on key technologies of flexible peak shaving system of thermal power unit coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2):10-22. | |
[39] | 周科, 李银龙, 李明皓, 等. 燃煤发电-物理储热耦合技术研究进展与系统调峰能力分析[J]. 洁净煤技术, 2022, 28(3):159-172. |
ZHOU Ke, LI Yinlong, LI Minghao, et al. Research progress on the coupling technology of coal-fired power generation-physical thermal storage and analysis for the system peaking capacity[J]. Clean Coal Technology, 2022, 28(3):159-172. | |
[40] | 邹小刚, 刘明, 肖海丰, 等. 火电机组耦合熔盐储热深度调峰系统设计及性能分析[J]. 热力发电, 2023, 52(2):146-153. |
ZOU Xiaogang, LIU Ming, XIAO Haifeng, et al. Design and performance analysis of deep peak shaving system of thermal power units coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2):146-153. | |
[41] | 刘金恺, 鹿院卫, 魏海姣, 等. 熔盐储热辅助燃煤机组调峰系统设计及性能对比[J]. 热力发电, 2023, 52(2):111-118. |
LIU Jinkai, LU Yuanwei, WEI Haijiao, et al. Design and performance comparison of peak shaving system of coal-fired unit aided by molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2):111-118. | |
[42] | 范庆伟, 居文平, 黄嘉驷, 等. 基于储热过程的工业供汽机组热电解耦研究[J]. 汽轮机技术, 2019, 61(3):221-223. |
FAN Qingwei, JU Wenping, HUANG Jiasi, et al. Research on decoupling of heat and power of industrial steam supply unit based on heat storage process[J]. Turbine Technology, 2019, 61(3):221-223. | |
[43] | 张显荣, 徐玉杰, 杨立军, 等. 多类型火电-储热耦合系统性能分析与比较[J]. 储能科学与技术, 2021, 10(5):1565-1578. |
ZHANG Xianrong, XU Yujie, YANG Lijun, et al. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2021, 10(5):1565-1578. | |
[44] | 王惠杰, 董学会, 昝永超, 等. 熔盐储热型塔式太阳能与燃煤机组耦合方式及热力性能分析[J]. 热力发电, 2019, 48(7):47-52. |
WANG Huijie, DONG Xuehui, ZAN Yongchao, et al. Coupling method and thermal performance analysis for molten salt heat storage tower solar energy power station and thermal power unit[J]. Thermal Power Generation, 2019, 48(7):47-52. | |
[45] | 庞力平, 张世刚, 段立强. 高温熔盐储能提高二次再热机组灵活性研究[J]. 中国电机工程学报, 2021, 41(8):2682-2691. |
PANG Liping, ZHANG Shigang, DUAN Liqiang. Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J]. Proceedings of the CSEE, 2021, 41(8):2682-2691. | |
[46] | 王坚, 王辉. 火电厂抽汽储能深度调峰技术研究[J]. 电力勘测设计, 2022(6):30-34. |
WANG Jian, WANG Hui. Research on the energy storage technique by steam extraction from thermal power units used to deep load modulation[J]. Electric Power Survey & Design, 2022(6):30-34. | |
[47] | 林俊光, 仇秋玲, 罗海华. 熔盐储热技术的应用现状[J]. 上海电气技术, 2021, 14(2):70-73. |
LIN Junguang, QIU Qiuling, LUO Haihua. Application status of molten salt heat storage technology[J]. Journal of Shanghai Electric Technology, 2021, 14(2):70-73. | |
[48] | 吴玉庭, 张晓明, 王慧富, 等. 基于弃风弃光或低谷电加热的熔盐蓄热供热技术及其评价[J]. 中外能源, 2017, 22(2):93-99. |
WU Yuting, ZHANG Xiaoming, WANG Huifu, et al. Molten salt heat storage and supply technology based on heating using abandoned wind power,PV power or off‑peak power[J]. Sino-Global Energy, 2017, 22(2):93-99. |
[1] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[2] | 孟强, 杨洋, 熊亚选. 添加纳米SiO2熔盐传热储热稳定性能研究[J]. 综合智慧能源, 2023, 45(9): 32-39. |
[3] | 孙健, 秦宇, 郝俊红, 杨勇平. 基于工业余热的高温空气源耦合热泵循环性能分析[J]. 综合智慧能源, 2023, 45(7): 40-47. |
[4] | 孙健, 秦宇, 王寅武, 吴可欣, 戈志华. 基于新型工质热泵的烟气余热回收优化温度研究[J]. 综合智慧能源, 2023, 45(4): 19-25. |
[5] | 窦蓬勃, 贾腾, 代彦军. 两级再吸收浓度差储热系统性能分析[J]. 综合智慧能源, 2023, 45(4): 41-46. |
[6] | 张金平, 周强, 王定美, 李津, 刘丽娟. 太阳能光热发电技术及其发展综述[J]. 综合智慧能源, 2023, 45(2): 44-52. |
[7] | 潘丽, 杜尔顺, 王剑晓, 李庚银. 风力发电与光热发电联合运行经济效益研究[J]. 综合智慧能源, 2022, 44(1): 26-30. |
[8] | 余莉, 徐静静, 马兰芳, 王佑天. 综合能源服务项目新增热泵系统的案例分析[J]. 综合智慧能源, 2022, 44(1): 72-79. |
[9] | 郭璞维, 彭跃, 邓靖敏, 李兵发, 周兴, 胡鋆, 郭海强, 王金星. 烟气余热回收与储能技术耦合应用的可行性研究[J]. 华电技术, 2021, 43(9): 62-68. |
[10] | 于强, 何聪, 智瑞平, 鹿院卫, 吴玉庭, 杨桂春. 储热过程竖排圆柱表面熔盐自然对流传热规律研究[J]. 华电技术, 2021, 43(7): 54-61. |
[11] | 熊亚选, 药晨华, 宋超宇, 王辉祥, 胡子亮, 丁玉龙. 低成本兰炭灰骨架定型相变储热材料的制备及性能研究[J]. 华电技术, 2021, 43(7): 62-67. |
[12] | 熊亚选, 宋超宇, 药晨华, 王慧慧, 王辉祥, 胡子亮, 吴玉庭, 丁玉龙. 纳米流体稳定性研究综述[J]. 华电技术, 2021, 43(7): 68-74. |
[13] | 王鼎, 肖虎, 陈宇轩, 岳松, 张燕平. 基于CFD方法的熔盐储罐预热分析[J]. 华电技术, 2021, 43(7): 75-81. |
[14] | 高嵩, 任博涵, 许继刚, 徐志强, 李鸿飞. 100 MW塔式光热电站吸热器中心高度优化研究[J]. 华电技术, 2021, 43(5): 70-74. |
[15] | 李娜, 易祖耀, 白银雷. 先进供热与智慧发电技术现状及发展趋势[J]. 华电技术, 2021, 43(3): 31-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||