综合智慧能源 ›› 2022, Vol. 44 ›› Issue (6): 1-11.doi: 10.3969/j.issn.2097-0706.2022.06.001
• 观点综述 • 下一篇
收稿日期:
2022-04-11
修回日期:
2022-06-03
出版日期:
2022-06-25
作者简介:
白嘉浩(1998),男,在读硕士研究生,从事农业能源互联网研究, 1150452128@qq.com。
基金资助:
Received:
2022-04-11
Revised:
2022-06-03
Published:
2022-06-25
摘要:
农业能源互联网背景下,在农业生产中进行电能替代可有效减少碳排放,提高环境质量,是实现“碳达峰”与“碳中和”目标的重要路径。基于大量新型农业电力负荷数据,分析了电能替代在农业生产中的潜力。提出通过接纳分布式可再生能源,将农业与能源深度耦合,建立低碳农业系统,通过数字孪生技术实现对农作物生产系统的智慧管控,在农业园区中构建虚拟电厂,削弱新能源输送带来的负面影响,提高能源利用率以及园区效益,从而实现农业能源互联网清洁、低碳、高效发展。
中图分类号:
白嘉浩, 付学谦. 碳中和背景下农业能源互联网电能替代综述[J]. 综合智慧能源, 2022, 44(6): 1-11.
BAI Jiahao, FU Xueqian. Review on electric energy substitution of agricultural energy internet in the context of carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(6): 1-11.
表1
农业温室负荷能耗
负荷类型 | 用途 | 时移特性 | 负荷特性 | 能耗/(kW·h) | 参考文献 |
---|---|---|---|---|---|
LED照明灯 | 增产、补光 | 06:00—09:00,17:00—20:00持续 | 可中断、可时移 | 5.000 | [ |
沼气池热泵 | 沼气、生产 | 08:00—20:00可间歇 | 可时移、可中断 | 3.000 | [ |
负压风机 | 通风换气 | 06:00—20:00可间歇 | 可中断、可时移 | 0.180 | [ |
循环风机 | 通风换气 | 06:00—20:00可间歇 | 可中断、可时移 | 0.250 | [ |
潜水泵 | 增加湿度 | 09:00—18:00可间歇 | 可中断、可时移 | 0.750 | [ |
微波硫灯 | 蔬菜补光 | 一天10 h | 可中断、可时移 | 0.050 | [ |
太阳能集热单元水泵 | 供热 | 可间歇 | 可中断、不可时移 | 1.200 | [ |
等离子体农业固氮设备 | 补充氮肥 | 可间歇 | 可时移、可中断 | 0.110±0.012 | [ |
基于变频调速的水泵电动机 | 灌溉驱动力 | 08:00—18:00可间歇 | 可时移、不可中断 | 5.500 | [ |
高压脉冲营养液杀菌器 | 杀菌消毒 | 可间歇 | 可时移、可中断 | 0.027 | [ |
电动负压式玉米播种机 | 播种 | 可间歇 | 可时移、可中断 | 25.700 | [ |
电液混合调控式大蒜播种机 | 播种 | 可间歇 | 可时移、可中断 | 1.500 | [ |
电击式太阳能杀虫灯 | 杀虫 | 可间歇 | 可中断、可时移 | 0.035 | [ |
太阳能平移式喷灌机 | 灌溉 | 运行8 h | 可中断、可时移 | 1.258 | [ |
表2
畜牧业负荷能耗
养殖种类 | 负荷 | 负荷特性 | 能耗/(kW·h) | 参考文献 |
---|---|---|---|---|
雏鸡舍 | 刮粪机 | 可时移、可中断 | 10.000 | [ |
雏鸡舍 | 风机 | 可时移、可中断 | 18.000 | [ |
雏鸡舍 | 料车 | 可时移、可中断 | 5.000 | [ |
猪舍 | 照明灯(节能灯) | 可时移、可中断 | 0.012 | [ |
猪舍 | 水泵 | 可时移、可中断 | 7.500 | [ |
奶牛厂 | 传送带式饲喂系统 | 可时移、不可中断 | 10.000 | [ |
奶牛厂 | 工作参数可调控的挤奶装置 | 可时移、可中断 | 10.800 | [ |
牛舍 | 喷雾与纵向负压通风相结合的卷帘设施 | 可时移、可中断 | 1.100 | [ |
养殖场 | 机械清粪系统 | 可时移、可中断 | 0.330 | [ |
牛舍 | 太阳能恒温饮水系统 | 可时移、可中断 | 9.000 | [ |
仔猪舍 | 基于自控系统的红外线加热灯 | 可时移、可中断 | 0.175 | [ |
畜舍 | 新型节能禽舍太阳能光伏光热联产/热泵系统 | 可时移、可中断 | 50.450 | [ |
表4
光伏温室设备能耗
温室设备 | 功率/kW | 数量/台 | 时长/h | 能耗/(kW·h) |
---|---|---|---|---|
LED照明设备 | 0.060 | 72 | 12 | 72×0.06×12=51.840 |
微波硫补光灯 | 0.050 | 64 | 10 | 64×10×0.05=32.000 |
电动播种机械 | 25.700 | 1 | 2 | 25.7×2=51.400 |
太阳能杀虫灯 | 0.040 | 1 | 24 | 0.035×24=0.840 |
固氮设备 | 0.120 | 1 | 24 | 0.122×24=2.928 |
平移式喷灌机 | 1.260 | 1 | 8 | 1.258×8=10.064 |
薄膜清洗设备 | 0.550 | 1 | 2 | 0.55×2=1.100 |
电动除草机械 | 1.100 | 1 | 8 | 1.1×8=8.800 |
施肥机 | 3.000 | 1 | 8 | 3×8=24.000 |
移动风机 | 0.650 | 4 | 24 | 0.65×24×4=62.400 |
[1] |
HUANG X, XU X, WANG Q, et al. Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997—2016[J]. International Journal of Environmental Research and Public Health, 2019, 16(17): 3105.
doi: 10.3390/ijerph16173105 |
[2] |
CHEN W, PENG Y, YU G. The influencing factors and spillover effects of interprovincial agricultural carbon emissions in China[J]. Plos One, 2020, 15(11): e0240800.
doi: 10.1371/journal.pone.0240800 |
[3] |
CUI H, ZHAO T, SHI H. STIRPAT-based driving factor decomposition analysis of agricultural carbon emissions in Hebei, China[J]. Polish Journal of Environmental Studies, 2018, 27(4). DOI: 10.15244/pjoes/77610.
doi: 10.15244/pjoes/77610 |
[4] | 屈博, 刘畅, 李德智, 等. “碳中和”目标下的电能替代发展战略研究[J]. 电力需求侧管理, 2021, 23(2):1-3,9. |
QU Bo, LIU Chang, LI Dezhi, et al. Research on the development strategy of electricity substitution under the target of "carbon neutral"[J]. Power Demand Side Management, 2021, 23(2):1-3,9. | |
[5] | 孙宏斌, 郭庆来, 潘昭光, 等. 能源互联网:驱动力,评述与展望[J]. 电网技术, 2015, 39(11):3005-3013. |
SUN Hongbin, GUO Qinglai, PAN Zhaoguang, et al. Energy Internet:Driving force, review and outlook[J]. Power System Technology, 2015, 39(11):3005-3013. | |
[6] | 秦羽飞, 葛磊蛟, 王波. 能源互联网群体智能协同控制与优化技术[J]. 华电技术, 2021, 43(9): 1-13. |
QIN Yufei, GE Leijiao, WANG Bo. Swarm intelligence collaborative control and optimization technology of Energy Internet[J]. Huadian Technology, 2021, 43(9): 1-13. | |
[7] |
FU X, YANG F. Viewpoints on the theory of agricultural energy internet[J]. Frontiers in Energy Research, 2022, 10: 871772.
doi: 10.3389/fenrg.2022.871772 |
[8] | 付学谦, 周亚中, 孙宏斌, 等. 园区农业能源互联网:概念、特征与应用价值[J]. 农业工程学报, 2020, 36(12):152-161. |
FU Xueqian, ZHOU Yazhong, SUN Hongbin, et al. Park-level agricultural energy internet: Concept, characteristic and application value[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12):152-161. | |
[9] | TANG W, WU P, ZHANG Y, et al. Analysis on the current situation and development trend of China's electrification level and electric energy substitution under the background of carbon neutral[C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 661(1): 012019. |
[10] |
谢典, 高亚静, 刘天阳, 等. “双碳”目标下我国再电气化路径及综合影响研究[J]. 综合智慧能源, 2022, 44(3): 1-8.
doi: 10.3969/j.issn.2097-0706.2022.03.001 |
XIE Dian, GAO Yajing, LIU Tianyang, et al. Study on the impact of re-electrification on the path to carbon peaking and carbon neutralization in China[J]. Integrated Intelligent Energy, 2022, 44(3): 1-8.
doi: 10.3969/j.issn.2097-0706.2022.03.001 |
|
[11] | 于海波, 陈景琪, 刘强, 等. 电能替代行业现状分析与建议[J]. 电力需求侧管理, 2020, 22(3):2-7. |
YU Haibo, CHEN Jingqi, LIU Qiang, et al. Analysis and suggestions on the current situation of electrical energy substitution industry[J]. Power Demand Side Management, 2020, 22(3):2-7. | |
[12] | 洪华伟, 吴凯槟, 岳萌萌. 福建省电能替代政策模拟分析及推进建议[J]. 电力需求侧管理, 2021, 23(5):29-34. |
HONG Huawei, WU Kaibin, YUE Mengmeng. Simulation analysis and promotion of electric energy substitution policy in Fujian Province[J]. Power Demand Side Management, 2021, 23(5):29-34. | |
[13] | 陈学庚, 温浩军, 张伟荣, 等. 农业机械与信息技术融合发展现状与方向[J]. 智慧农业, 2020, 2(4):1-16. |
CHEN Xuegeng, WEN Haojun, ZHANG Weirong, et al. Advances and progress of agricultural machinery and sensing technology fusion[J]. Smart Agriculture, 2020, 2(4):1-16. | |
[14] |
GAO H, XUE J. Modeling and economic assessment of electric transformation of agricultural tractors fueled with diesel[J]. Sustainable Energy Technologies and Assessments, 2020, 39: 100697.
doi: 10.1016/j.seta.2020.100697 |
[15] | 金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型:中国农业碳排放特征及其减排路径[J]. 改革, 2021(5):29-37. |
JIN Shuqin, LIN Yu, NIU Kunyu. Driving green transformation of agriculture with low carbon: Characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021(5):29-37. | |
[16] | SCOLARO E, BELIGOJ M, ESTEVEZ M P, et al. Electrification of agricultural machinery:A review[J]. IEEE Access, 2021, 12:164520-164541. |
[17] |
MUÑOZ-GARCÍA M A, HERNÁNDEZ-CALLEJO L. Photovoltaics and electrification in agriculture[J]. Agronomy, 2021, 12(1): 44.
doi: 10.3390/agronomy12010044 |
[18] | 陈正, 杨建华, 靳开元, 等. 基于能源区块链的设施农业负荷时移与光伏就地消纳控制策略[J]. 电力自动化设备, 2021, 41(2):47-55. |
CHEN Zheng, YANG Jianhua, JIN Kaiyuan, et al. Control strategy of time-shift facility agriculture load and photovoltaic local consumption based on energy blockchain[J]. Electric Power Automation Equipment, 2021, 41(2):47-55. | |
[19] | 侯晨雪. 独立光伏温室系统荷-源匹配优化研究[D]. 昆明: 云南师范大学, 2021. |
[20] | 林芬, 岑旭, 陈孟颖, 等. 微波硫灯补光技术在农业节电中的应用[J]. 电力需求侧管理, 2018, 20(3):34-36. |
LIN Fen, CEN Xu, CHEN Mengying, et al. Application of microwave sulfur lamp filling technology in agricultural energy saving[J]. Power Demand Side Management, 2018, 20(3):34-36. | |
[21] | 李竟超. 循环水养殖调温系统技术研究[D]. 上海: 上海海洋大学, 2018. |
[22] | 刘国栋. 滑动弧等离子体农业固氮设备的研制[D]. 北京: 中国农业大学, 2021. |
[23] | 刘宏. 灌溉用水泵异步电动机变频控制技术研究[D]. 北京: 中国农业大学, 2014. |
[24] | 关新星. 高压脉冲电场对无土栽培营养液杀菌的研究[D]. 北京: 中国农业大学, 2018. |
[25] | LIU K, YI S. Design and experiment of seeding performance monitoring system for suction corn planter[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(4): 97-103. |
[26] | 张春岭, 吴晓庆, 谢东波, 等. 电液混合调控式大蒜播种机设计与试验[J]. 农业机械学报, 2021, 52(10):166-174. |
ZHANG Chunling, WU Xiaoqing, XIE Dongbo, et al. Design and experiment of electro-hydraulic mixed garlic planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10):166-174. | |
[27] | HUANG K, LI K, SHU L, et al. High voltage discharge exhibits severe effect on ZigBee-based device in solar insecticidal lamps Internet of Things[J]. IEEE Wireless Communications, 2020, 27(6): 140-145. |
[28] | SHAHRIAR S M, PEYAL H I, NAHIDUZZAMAN M, et al. An IoT-based real-time intelligent irrigation system using machine learning[C]// 2021 13th International Conference on Information & Communication Technology and System (ICTS). IEEE, 2021: 277-281. |
[29] |
ZHOU J, LONG X M, LUO H J. Spectrum optimization of light-emitting diode insecticide lamp based on partial discharge evaluation[J]. Measurement, 2018, 124: 72-80.
doi: 10.1016/j.measurement.2018.03.073 |
[30] | APONTE-ROA D A, COLLAZO X, GOENAGA M, et al. Development and evaluation of a remote controlled electric lawn mower[C]// 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2019: 1-5. |
[31] | HAZEM S, MOSTAFA M, MOHAMED E, et al. Design and path planning of autonomous solar lawn mower[C]// International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021, 85369: V001T01A016. |
[32] |
HU J, HE J, WANG Y, et al. Design and study on lightweight organic fertilizer distributor[J]. Computers and Electronics in Agriculture, 2020, 169: 105149.
doi: 10.1016/j.compag.2019.105149 |
[33] |
DEVRAM L S, MANI I. Design and development of pressurized aqueous fertilizer application system for seeder[J]. Agricultural Engineering Today, 2020, 44(1): 12-19.
doi: 10.52151/aet2020441.1514 |
[34] |
ZHANG G, LIU X, FU Z, et al. Precise measurements and control of the position of the rolling shutter and rolling film in a solar greenhouse[J]. Journal of Cleaner Production, 2019, 228: 645-657.
doi: 10.1016/j.jclepro.2019.04.129 |
[35] | 宋万军. 探究我国农业机械能耗现状分析及节能减排技术[J]. 南方农业, 2019, 13(17):152-153. |
SONG Wanjun. Exploring the current situation analysis of energy consumption of agricultural machinery in my country and the technology of energy saving and emission reduction[J]. South China Agriculture, 2019, 13(17):152-153. | |
[36] | 生态环境部. 企业温室气体排放核算方法与报告指南发电设施(2022年修订版)[Z]. |
[37] | 综合能耗计算通则: GB/T 2589—2020[S]. |
[38] | 张晓雷, 马丁, 王天日. 黑龙江省畜牧业碳排放效率及影响因素研究[J]. 黑龙江畜牧兽医, 2020(4):7-12,147. |
ZHANG Xiaolei, MA Ding, WANG Tianri. Study on carbon emission efficiency and influencing factors of animal husbandry in Heilongjiang Province[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(4):7-12,147. | |
[39] | 赵艺雯, 林丽梅, 郑逸芳. 福建省生猪养殖碳排放的库兹涅茨曲线特征与影响因素分析[J]. 福建江夏学院学报, 2021, 11(1):18-26,64. |
ZHAO Yiwen, LIN Limei, ZHENG Yifang. Analysis of Kuznets curve characteristics and influencing factors of carbon emissions from pig breeding in Fujian Province[J]. Journal of Fujian Jiangxia University, 2021, 11(1):18-26,64. | |
[40] |
PARIS B, VANDOROU F, TYRIS D, et al. Energy use in the EU livestock sector: A review recommending energy efficiency measures and renewable energy sources adoption[J]. Applied Sciences, 2022, 12(4): 2142.
doi: 10.3390/app12042142 |
[41] | 甘雨田. 中国奶牛产业碳排放量估算及影响因素研究[D]. 哈尔滨: 东北农业大学, 2019. |
[42] | 周晶, 青平, 颜廷武. 技术进步、生产方式转型与中国生猪养殖温室气体减排[J]. 华中农业大学学报(社会科学版), 2018(4):38-45,167. |
ZHOU Jing, QING Ping, YAN Tingwu. Technology progress,production intensification and greenhouse gas emission reduction in China's pig breeding[J]. Journal of Huazhong Agricultural University(Social Sciences Edition), 2018(4):38-45,167. | |
[43] | 钟长林. 育雏鸡舍能耗分析及太阳能应用研究[D]. 北京: 中国农业大学, 2014. |
[44] | 杨晓亮. 规模化畜牧养殖场沼气发电节能工程技术改造分析[J]. 能源与环保, 2019, 41(6):73-76. |
YANG Xiaoliang. Analysis on energy-saving engineering technology transformation of biogas power generation in large-scale livestock farm[J]. China Energy and Environmental Protection, 2019, 41(6):73-76. | |
[45] | TANGORRA F M, CALCANTE A. Energy consumption and technical-economic analysis of an automatic feeding system for dairy farms: Results from a field test[J]. Journal of Agricultural Engineering, 2018, 869:228-232. |
[46] | 陈轩. 挤奶工作参数可调控的挤奶装置研究与试验[D]. 北京: 中国农业大学, 2019. |
[47] | 刘媛媛. 喷雾与纵向负压通风相结合的卷帘牛舍降温效果研究[D]. 北京: 中国农业大学, 2017. |
[48] | 杨佳乐. 猪舍机械清粪系统传动机构优化设计与验证[D]. 北京: 中国农业大学, 2019. |
[49] | 贾爽. 太阳能恒温饮水系统在牛舍中应用效果及可行性研究[D]. 北京: 中国农业大学, 2020. |
[50] | 张继成, 刘洪贵, 郑萍, 等. 哺乳期仔猪局部温度智能控制系统设计[J]. 家畜生态学报, 2021, 42(4):67-71. |
ZHANG Jicheng, LIU Honggui, ZHENG Ping, et al. Design and experiment of intelligent control system for local temperature of suckling piglets[J]. Acta Ecologiae Animalis Domastici, 2021, 42(4):67-71. | |
[51] |
GURLER T, ELMER T, CUI Y, et al. Experimental investigation of a novel PVt/heat pump system for energy-efficient poultry houses[J]. International Journal of Low-Carbon Technologies, 2018, 13(4): 404-413.
doi: 10.1093/ijlct/cty049 |
[52] | ARZANI H, ALIZADEH E, LAYEGHI M, et al. Implementing grazing system using electric fences for range management[J]. Rangeland, 2018, 11(4): 522-532. |
[53] | 金永镐, 王龙腾. 基于自适应储能模式的高效率电子围栏的设计[J]. 电子技术应用, 2013, 39(11):56-59. |
JIN Yonggao, WANG Longteng. Design of the high-efficient electronic fence based on adaptive energy storage mode[J]. Application of Electronic Technique, 2013, 39(11):56-59. | |
[54] |
YEO U H, LEE I B, KIM R W, et al. Computational fluid dynamics evaluation of pig house ventilation systems for improving the internal rearing environment[J]. Biosystems Engineering, 2019, 186:259-278.
doi: 10.1016/j.biosystemseng.2019.08.007 |
[55] |
JEONG M G, RATHNAYAKE D, MUN H S, et al. Effect of a sustainable air heat pump system on energy efficiency, housing environment, and productivity traits in a pig farm[J]. Sustainability, 2020, 12(22): 9772.
doi: 10.3390/su12229772 |
[56] | KRAUSP V, OVIK G B. Electric robotized organic technology for livestock production on a pasture field[M]//Advanced Agro-Engineering Technologies for Rural Business Development. IGI Global, 2019: 180-198. |
[57] | SINHA S S, SAHA S K. Dynamic modeling of a sheep hair shearing device using RecurDyn and its verification[C]// IUTAM Symposium on Intelligent Multibody Systems: Dynamics,Control,Simulation.Springer,Cham, 2019: 165-174. |
[58] |
SOLOVYOV S A, TURGENBAEV M S, RUSAKOV A N. High-frequency electric shearing unit for sheep[J]. Russian Agricultural Sciences, 2018, 44(5): 490-492.
doi: 10.3103/S1068367418050191 |
[59] | VIK J, STRÆTE E P, HANSEN B G, et al. The political robot:The structural consequences of automated milking systems (AMS) in Norway[J]. NJAS-Wageningen Journal of Life Sciences, 2019, 90: 100305. |
[60] |
KUCZAJ M, MUCHA A, KOWALCZYK A, et al. Relationships between selected physiological factors and milking parameters for cows using a milking robot[J]. Animals, 2020, 10(11): 2063.
doi: 10.3390/ani10112063 |
[61] | LI W, LIU C P. Heating design of cowshed floor heating system based on solar energy/air source heat pump in plateau cold area[C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020, 514(4): 042075. |
[62] | BARK L, SALOMON E. Improved concrete outdoor runs in housing systems for growing-finishing pigs: Automatic manure scrapers[R]. European Union, 2022. |
[63] | TIAN F, XIA K, WANG J, et al. Design and experiment of self-propelled straw forage crop harvester[J]. Advances in Mechanical Engineering, 2021, 13(7): 16878140211024455. |
[64] | VALGE A, SUKHOPAROV A, PAPUSHIN E, et al. Evaluation effectiveness of forage harvesters in silage preparation[C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 699(1): 012050. |
[65] |
GURLER T, ELMER T, CUI Y, et al. Experimental investigation of a novel PVt/heat pump system for energy-efficient poultry houses[J]. International Journal of Low-Carbon Technologies, 2018, 13(4): 404-413.
doi: 10.1093/ijlct/cty049 |
[66] |
李晨, 李昊玉, 孔海峥, 等. 中国渔业生产系统隐含碳排放结构特征及驱动因素分解[J]. 资源科学, 2021, 43(6):1166-1177.
doi: 10.18402/resci.2021.06.09 |
LI Chen, LI Haoyu, KONG Haizheng, et al. Structural characteristics and driving factors of embodied carbon emissions from fishery production system in China[J]. Resources Science, 2021, 43(6): 1166-1177.
doi: 10.18402/resci.2021.06.09 |
|
[67] | 邵桂兰, 褚蕊, 李晨. 基于碳排放和碳汇核算的海洋渔业碳平衡研究——以山东省为例[J]. 中国渔业经济, 2018, 36(4):4-13. |
SHAO Guilan, CHU Rui, LI Chen. Research on carbon balance of marine fishery in Shandong Province using the calculation results of carbon emission and carbon sink[J]. Chinese Fisheries Economics, 2018, 36(4):4-13. | |
[68] | 李晨, 冯伟, 邵桂兰. 中国省域渔业全要素碳排放效率时空分异[J]. 经济地理, 2018, 38(5):179-187. |
LI Chen, FENG Wei, SHAO Guilan. Spatio-temporal difference of total carbon emission efficiency of fishery in China[J]. Economic Geography, 2018, 38(5):179-187. | |
[69] | 禹振军, 高娇, 蒋彬, 等. 正压风送式投饵机改进及试验研究[J]. 农业机械, 2021(3):110-112. |
YU Zhenjun, GAO Jiao, JIANG Bin, et al. Improvement and experimental research on positive pressure air feeder[J]. Agricultural Machinery, 2021(3):110-112. | |
[70] | 王水传, 俞舜廷, 郭子淳, 等. “1+N”型精准投饵装置设计[J]. 现代农业装备, 2020, 41(5):14-17,29. |
WANG Shuichuan, YU Shunting, GUO Zichun, et al. Design of "1+N" precise feeding device[J]. Modern Agricultural Equipment, 2020, 41(5):14-17,29. | |
[71] | 孔维祎. 浅谈池塘微孔增氧技术[J]. 农民致富之友, 2019(9):174. |
KONG Weiyi. Discussion on micro-pore oxygenation technology in pond[J]. Nong Min Zhi Fu Zhi You, 2019(9):174. | |
[72] | 聂虎子, 尹立鹏. 高原渔业集装箱设施养殖试验研究[J]. 现代农业装备, 2020, 41(2):59-63. |
NIE Huzi, YIN Lipeng. Breeding experimental research on fishery cotainer facility on plateau[J]. Modern Agricultural Equipment, 2020, 41(2):59-63. | |
[73] | 母刚, 申阳, 李秀辰, 等. 太阳能增氧机的设计与试验研究[J]. 科技创新与应用, 2020(25):31-34. |
MU Gang, SHEN Yang, LI Xiuchen, et al. Design and experimental study of solar oxygen generator[J]. Technology Innovation and Application, 2020(25):31-34. | |
[74] | 吴波, 赵德安, 孙月平, 等. 一种河蟹养殖用自动化水草清理作业船[J]. 中国农机化学报, 2016, 37(9):88-91. |
WU Bo, ZHAO Dean, SUN Yueping, et al. Automatic aquatic cleaning ship for river crabs breeding[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(9):88-91. | |
[75] | 罗吉. 多功能全自动水产养殖作业船控制系统[D]. 镇江: 江苏大学, 2017. |
[76] | TIWARI V, KUMARI S, SAHOO P P. PV fed solar pump designing for fish cultivation[M]// Recent Advances in Power Systems. Singapore:Springer, 2022: 127-138. |
[77] |
NOURI G, NOOROLLAHI Y, YOUSEFI H. Solar assisted ground source heat pump systems:A review[J]. Applied Thermal Engineering, 2019, 163: 114351.
doi: 10.1016/j.applthermaleng.2019.114351 |
[78] |
RIZAL T A, MUHAMMAD Z. Fabrication and testing of hybrid solar-biomass dryer for drying fish[J]. Case Studies in Thermal Engineering, 2018, 12: 489-496.
doi: 10.1016/j.csite.2018.06.008 |
[79] |
OGUNNAİKE F, OLALUSİ A. Modelling kinetics of extruded fish feeds in a continuous belt dryer[J]. Turkish Journal of Agricultural Engineering Research, 2021, 2(2): 289-297.
doi: 10.46592/turkager.2021.v02i02.003 |
[80] | CAO S, CHEN Z, SUN Y, et al. Research on automatic bait casting system for crab farming[C]// 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT). IEEE, 2020: 403-408. |
[81] | MA Y, DING W. Design of intelligent monitoring system for aquaculture water dissolved oxygen[C]// 2018 IEEE 3rd Advanced Information Technology,Electronic and Automation Control Conference (IAEAC). IEEE, 2018: 414-418. |
[82] | 单建军, 管崇武, 张成林, 等. 电解铜离子浓度对循环水养殖系统杀菌效果的影响[J]. 中国农学通报, 2019, 35(9):138-142. |
SHAN Jianjun, GUAN Chongwu, ZHANG Chenglin, et al. The concentration of Cu2+: Effects on germicidal efficacy in recirculating aquaculture system[J]. Chinese Agricultural Science Bulletin, 2019, 35(9):138-142. | |
[83] | NGUYEN C N, LE T N L, NGUYEN V D, et al. A study on localization of floating aquaculture sludge collecting robot[C]// IFToMM Asian Conference on Mechanism and Machine Science. Springer, 2021: 512-518. |
[84] | 战海云, 李晓娜, 叶建全, 等. 玉米无膜浅埋滴灌水肥一体化与大水漫灌水电能耗及产量效益对比[J]. 安徽农学通报, 2021, 27(12):36-37. |
ZHAN Haiyun, LI Xiaona, YE Jianquan, et al. Comparison of water and electricity energy consumption and yield benefit between irrigation and fertilizer integration without film and shallow burying and flood irrigation of maize[J]. Anhui Agricultural Science Bulletin, 2021, 27(12):36-37. |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[3] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[4] | 李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34. |
[5] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[6] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[7] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[8] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
[9] | 苑曙光, 张瑜婷, 王峰, 苑广震. 蒙西地区规模化储能商业运行模式及风险分析[J]. 综合智慧能源, 2024, 46(3): 63-71. |
[10] | 李成雲, 杨东升, 周博文, 杨波, 李广地. 基于数字孪生技术的新型电力系统数字化[J]. 综合智慧能源, 2024, 46(2): 1-11. |
[11] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
[12] | 孔慧超, 王文钟, 雷一, 彭静, 李海波. 园区受端新型电力系统电力电量再平衡方法[J]. 综合智慧能源, 2024, 46(2): 68-74. |
[13] | 田泽禹, 沙钊旸, 赵全斌, 严卉, 种道彤. 针对温控负载变化的虚拟电厂控制策略研究[J]. 综合智慧能源, 2024, 46(1): 28-37. |
[14] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[15] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||