[1] |
颜畅, 黄晟, 屈尹鹏. 面向碳中和的海上风电制氢技术研究综述[J]. 综合智慧能源, 2022, 44(5):30-40.
doi: 10.3969/j.issn.2097-0706.2022.05.003
|
|
YAN Chang, HUANG Sheng, QU Yinpeng. Thought about the integrated energy system in China[J]. Integrated Intelligent Energy, 2022, 44(5):30-40.
doi: 10.3969/j.issn.2097-0706.2022.05.003
|
[2] |
贾宏杰, 穆云飞, 余晓丹. 对我国综合能源系统发展的思考[J]. 电力建设, 2015, 36(1):16-25.
doi: 10.3969/j.issn.1000-7229.2015.01.003
|
|
JIA Hongjie, MU Yunfei, YU Xiaodan. Thought about the integrated energy system in China[J]. Electric Power Construction, 2015, 36(1):16-25.
doi: 10.3969/j.issn.1000-7229.2015.01.003
|
[3] |
王晓海, 徐静静, 胡永锋, 等. 新形势下发电企业在综合能源服务领域的业务分析[J]. 综合智慧能源, 2022, 44(3):9-16.
doi: 10.3969/j.issn.2097-0706.2022.03.002
|
|
WANG Xiaohai, XU Jingjing, HU Yongfeng, et al. Business analysis on integrated energy services of power generation enterprises under the new circumstances[J]. Integrated Intelligent Energy, 2022, 44(3):9-16.
doi: 10.3969/j.issn.2097-0706.2022.03.002
|
[4] |
于波, 孙恒楠, 项添春, 等. 综合能源系统规划设计方法[J]. 电力建设, 2016, 37(2):78-84.
doi: 10.3969/j.issn.1000-7229.2016.02.011
|
|
YU Bo, SUN Hengnan, XIANG Tianchun, et al. Planning design method of integrated energy system[J]. Electric Power Construction, 2016, 37(2):78-84.
doi: 10.3969/j.issn.1000-7229.2016.02.011
|
[5] |
刘思东, 朱帮助. 基于最坏情况条件鲁棒利润的发电机组最优组合[J]. 数学的实践与认识, 2015, 45(16):99-106.
|
|
LIU Sidong, ZHU Bangzhu. Unit commitment of generation company based on worst-case conditional robust profit[J]. Journal of Mathematics in Practice and Theory, 2015, 45(16):99-106.
|
[6] |
冯雪, 张金锁, 邹绍辉. 基于多源信息融合的能源需求预测模型研究综述[J]. 统计与决策, 2016(23): 29-32.
|
[7] |
林亭君, 董坤, 赵剑锋, 等. 综合能源系统内外协同优化调度技术研究现状及展望[J]. 智慧电力, 2021, 49(6):1-8.
|
|
LIN Tingjun, DONG Kun, ZHAO Jianfeng, et al. Research status and prospects of internal and external collaborative optimization scheduling technology for integrated energy system[J]. Smart Power, 2021, 49(6):1-8.
|
[8] |
杨允, 刘鹏坤, 向艳蕾. 有蓄能的多能互补耦合系统优化配置研究[J]. 热能动力工程, 2021, 36(1):108-116.
|
|
YANG Yun, LIU Pengkun, XIANG Yanlei. Optimal configuration of multi-energy complementary systems with storage[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(1):108-116.
|
[9] |
练小林, 李晓露, 曹阳, 等. 考虑多主体主从博弈的多微网协调优化调度[J]. 电力系统及其自动化学报, 2021, 33(1):85-93.
|
|
LIAN Xiaolin, LI Xiaolu, CAO Yang, et al. Coordinated optimization scheduling of multi-microgrid considering multi-agent leader-follower game[J]. Proceedings of the CSU-EPSA, 2021, 33(1):85-93.
|
[10] |
赵海彭, 苗世洪, 李超, 等. 考虑冷热电需求耦合响应特性的园区综合能源系统优化运行策略研究[J]. 中国电机工程学报, 2022, 42(2):573-584.
|
|
ZHAO Haipeng, MIAO Shihong, LI Chao, et al. Research on optimal operation strategy for park-level integrated energy system considering cold-heat-electric demand coupling response characteristics[J]. Proceedings of the CSEE, 2022, 42(2):573-584.
|
[11] |
吉斌, 孙绘, 昌力, 等. 黏性电力用户参与需求侧响应的行为决策建模与分析[J]. 综合智慧能源, 2022, 44(2): 80-88.
doi: 10.3969/j.issn.2097-0706.2022.02.011
|
|
JI Bin, SUN Hui, CHANG Li, et al. Modeling and analysis on decision making behavior of loyal users participating in demand-side response[J]. Integrated Intelligent Energy, 2022, 44(2): 80-88.
doi: 10.3969/j.issn.2097-0706.2022.02.011
|
[12] |
潘毅群. 实用建筑能耗模拟手册[M]. 北京: 中国建筑工业出版社, 2013.
|
[13] |
GORDON J M, NG K C. A general thermodynamic model for absorption chillers: Theory and experiment[J]. Heat Recovery and CHP, 1995, 15(1):73-83.
|
[14] |
SWIDER D J. A comparison of empirically based steady-state models for vapor-compression liquid chillers[J]. Applied Thermal Engineering, 2003, 23(5):539-556.
doi: 10.1016/S1359-4311(02)00242-9
|
[15] |
LEE T S, LU W C. An evaluation of empirically-based models for predicting energy performance of vapor-compression water chillers[J]. Applied Energy, 2010, 87(11):3486-3493.
doi: 10.1016/j.apenergy.2010.05.005
|
[16] |
Lawrence Berkeley National Laboratories. DOE 2 Reference manual[Z]. 1980.
|
[17] |
BRAUN J E, MITCHELL J E. Models for variable-speed centrifugal chillers[J]. ASHRAE Transactions, 1987, 93:1794-1813.
|
[18] |
REDDY T A, ANDERSEN K K. An evaluation of classical steady-state off-line linear parameter estimation methods applied to chiller performance monitoring[J]. International Journal of HVAC&R Research, 2002, 8(1): 101-124.
|
[19] |
简亚婷, 陈刚, 贾沛, 等. 南京某商业项目高效制冷空调系统设计[J]. 暖通空调, 2022, 52(4):47-51.
|
|
JIAN Yating, CHEN Gang, JIA Pei, et al. Design of high-efficiency refrigeration and air conditioning system for a commercial project in Nanjing[J]. HVAC, 2022, 52(4):47-51.
|
[20] |
张会福. 重庆村镇太阳能复合空气源热泵热水系统过渡季节性能实测研究[D]. 重庆: 重庆大学, 2015.
|
[21] |
陈健勇, 李浩, 陈颖, 等. 空气源热泵空调技术应用现状及发展前景[J]. 华电技术, 2021, 43(11): 25-39.
|
|
CHEN Jianyong, LI Hao, CHEN Ying, et al. Application status and perspectives of air-source heat pump air conditioning technology[J]. Huadian Technology, 2021, 43(11): 25-39.
|
[22] |
顾志祥, 刘洁, 孔飞, 等. 楼宇型分布式能源站空调水平衡影响分析[J]. 华电技术, 2019, 41(4): 47-50.
|
|
GU Zhixiang, LIU Jie, KONG Fei, et al. Analysis on influence of air conditioning water balance in building-type distributed energy station[J]. Huadian Technology, 2019, 41(4): 47-50.
|
[23] |
吴学光, 张学成, 印永华, 等. 异步风力发电系统动态稳定性分析的数学模型及其应用[J]. 电网技术, 1998, 22(6):68-72.
|
|
WU Xueguang, ZHANG Xuecheng, YIN Yonghua, et al. Application of models of the wind turbine induction generators(WTIGs) to wind power system dynamic stability analysis[J]. Power System Technology, 1998, 22(6):68-72.
|
[24] |
郭永丽, 吴健, 温步瀛, 等. 变速风力机的建模与仿真[J]. 福建电力与电工, 2008, 28(3):1-5.
|
|
GUO Yongli, WU Jian, WEN Buying, et al. Modeling and simulation of variable wind turbines[J]. Fujian Dianli Yu Diangong, 2008, 28(3):1-5.
|
[25] |
杜作义, 马乐瑶. 基于Matlab_simulink的风速仿真研究[J]. 中国西部科技, 2013, 12(12):46-47.
|
[26] |
谢依桐, 唐继旭, 秦朝葵. 基于Modelica的某宾馆能源系统仿真研究[J]. 建筑节能, 2022, 50(2):60-64,80.
|
|
XIE Yitong, TANG Jixu, QIN Chaokui. Modelica-based simulation of a hotel energy system[J]. Journal of BEE, 2022, 50(2): 60-64,80.
|