综合智慧能源 ›› 2022, Vol. 44 ›› Issue (4): 51-64.doi: 10.3969/j.issn.2097-0706.2022.04.007
收稿日期:
2022-01-15
修回日期:
2022-03-20
出版日期:
2022-04-25
通讯作者:
* 闫君(1984),男,副教授,工学博士,从事高效储热技术研究, miraclebwh@sjtu.edu.cn。作者简介:
王长君(1980),男,工程师,工学硕士,从事储电、储热/冷等项目的开发研究, 02010891@163.com
基金资助:
WANG Changjun1(), YAN Jun2,*(
), DONG Yong3, SONG Zhanlong3
Received:
2022-01-15
Revised:
2022-03-20
Published:
2022-04-25
摘要:
实现“双碳”目标,需要提升新能源利用率并解决储能相关问题。相变材料(PCM)因其独特的物理特性能够在特定的温度下存储和释放能量,在能量存储方面有很广泛的应用。中低温相变储能技术的应用主要集中在建筑节能方面。分析了相变储能技术与热泵技术结合,在提升热泵的性能系数(COP)、减少热泵除霜时间和存储热泵热量/冷量等方面的应用进展情况。两者结合,能有效提升热泵COP、热泵机组运行稳定性以及用户端的舒适度,在建筑节能领域有着广阔的应用前景。指出了实际应用中存在的温度匹配、功率匹配、系统成本等问题,为未来研究提供可参考方向。
中图分类号:
王长君, 闫君, 董勇, 宋占龙. 相变储能技术在热泵系统中的应用综述[J]. 综合智慧能源, 2022, 44(4): 51-64.
WANG Changjun, YAN Jun, DONG Yong, SONG Zhanlong. Application of phase-change energy storage technology in heat pump systems[J]. Integrated Intelligent Energy, 2022, 44(4): 51-64.
表1
部分文献中出现的PCM的热物理性
材料 | 相变温度/℃ | 比焓/ (kJ·kg-1) | 比热容/ [kJ·(kg·K) -1] | 固态密度/ (kg·L-1) | 液态密度/ (kg·L-1) | 导热系数/ [W·(m·K) -1] | |
---|---|---|---|---|---|---|---|
无机材料 | CaCl2·6H2O[ | 30.0 | 187.49 | 1.46(s)/2.13(l) | 1.500 | 1.710 | — |
41%MgCl2·(H2O)6+ 59%Mg(NO3)2·(H2O)6[ | 40.0~65.0 | — | — | — | — | 0.600 | |
Na2SO4·10H2O[ | 32.4 | 241.00 | 1.80(s)/3.30(l) | 1.460 | 1.330 | 0.700(s)/0.540(l) | |
石蜡类 | RT6[ | 8.0 | 140.00 | 1.80(s)/2.40(l) | 0.860 | 0.770 | — |
RT10[ | 9.0 | 134.90 | 2.00 | 0.880 | 0.770 | 0.200 | |
RT11HC[ | 10.0~12.0 | — | — | 0.880 | 0.770 | 0.200 | |
A16[ | 15.0~17.0 | 213.00 | 2.30~2.37 | 0.830 | 0.800 | 0.180 | |
RT22[ | 19.0~23.0 | 200.00 | 2.00 | 0.880 | 0.770 | 0.200 | |
RT27[ | 25.0 | 146.00 | 1.80(s)/2.40(l) | 0.870 | 0.750 | — | |
Paraffin[ | 35.0 | 160.00 | 2.00 | 0.880 | 0.760 | 0.200 | |
Paraffin[ | 44.0 | 174.00 | 2.44(s)/2.53(l) | 0.830 | 0.783 | 0.130 | |
RT44HC[ | 43.0 | 255.00 | — | 0.860 | 0.760 | 0.200 | |
Paraffin[ | 49.6~50.6 | 146.00 | 2.20(s)/3.62(l) | 0.845 | 0.765 | 0.360 | |
Paraffin[ | 54.9~55.8 | 149.10 | 2.37(s)/3.16(l) | 0.850 | 0.768 | 0.400 | |
Paraffin[ | 52.0~54.0 | 140.00 | 2.40 | 0.920 | — | 5.380 | |
RT58[ | 58.0 | 179.00 | 1.80(s)/2.40(l) | 0.760 | 0.900 | — | |
Paraffin[ | 59.5~60.2 | 189.50 | 2.89(s)/4.31(l) | 0.862 | 0.780 | 0.400 | |
有机酸类 | 36%硬脂酸+64%棕榈酸[ | 40.0~65.0 | — | — | — | — | 0.288 |
65%癸酸+35%月桂酸[ | 18.0 | 140.80 | — | 0.900 | — | 0.143 |
[1] | 陈永翀, 冯彩梅, 刘勇. 双碳背景下中国储新比的发展趋势[J]. 能源, 2021(8):41-45. |
CHEN Yongchong, FENG Caimei, LIU Yong, et al. Development trend of China's energy storage and new energy ratio underthe background of double carbon[J]. Energy, 2021(8):41-45. | |
[2] |
张俊锋, 许文娟, 王跃锜, 等. 面向碳中和的中国碳排放现状调查与分析[J]. 华电技术, 2021, 43(10):1-10.
doi: 10.3969/j.issn.1674-1951.2021.10.001 |
ZHANG Junfeng, XU Wenjuan, WANG Yueqi, et al. Investigation and analysis on carbon emission status in China on the path to carbon neutrality[J]. Huadian Technology, 2021, 43(10):1-10. | |
[3] | LIU Y, YANG L, ZHENG W, et al. A novel buildingenergy efficiencyevaluation index:Establishment of calculation model andapplication[J]. Energy Conversion and Management, 2018(166):522-533. |
[4] |
DASCALAKI E G, DROUTSA K, GAGLIA A G, et al. Data collection and analysis of the building stock and its energy performance—An example for Hellenic buildings[J]. Energy and Buildings, 2010, 42(8):1231-1237.
doi: 10.1016/j.enbuild.2010.02.014 |
[5] | 陈涛, 孙韩雪, 朱照琪, 等. (准)共晶系相变储能材料的研究进展[J]. 化工进展, 2019, 38(7):3265-3273. |
CHEN Tao, SUN Hanxue, ZHU Zhaoqi, et al. Progress in studies of (quasi-)eutectic phase changeenergy storage materials[J]. Chemical Industry and Engineering Progress, 2019, 38(7):3265-3273. | |
[6] | ESEN M. Thermal performance of a solar-aided latent heat store used for space heating by heat pump[J]. Solar Energy, 2000, 69(1):15-25. |
[7] |
DA CUNHA J P, EAMES P. Compact latent heat storage decarbonisation potential for domestic hot water and space heating applications in the UK[J]. Applied Thermal Engineering, 2018, 134:396-406.
doi: 10.1016/j.applthermaleng.2018.01.120 |
[8] | QU S, MA F, JI R, et al. System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage[J]. Energy & Buildings, 2015, 105:294-301. |
[9] | MAARAOUI S, CLODIC D, DALICIEUX P. Heat pump with a condenser including solid-liquid phase change material[C]// International Refrigeration and Air Conditioning Conference,Purdue,USA, 2012. |
[10] |
BONAMENTE E, AQUINO A, COTANA F. A PCM thermal storage for ground-source heat pumps:Simulating the system performance via CFD approach[J]. Energy Procedia, 2016, 101:1079-1086.
doi: 10.1016/j.egypro.2016.11.147 |
[11] |
QU M L, TANG Y B, ZHANG T Y, et al. Experimental investigation on the multi-mode heat discharge process of a PCM heat exchanger during TES based reverse cycle defrosting using in cascade air source heat pumps[J]. Applied Thermal Engineering, 2019, 151:154-162.
doi: 10.1016/j.applthermaleng.2019.02.003 |
[12] |
CHEN X M, ZHANG Q, ZHAI Z J, et al. Performance of a cold storage air-cooled heat pump system with phase change materials for space cooling[J]. Energy and Buildings, 2020, 228(5):110405.
doi: 10.1016/j.enbuild.2020.110405 |
[13] |
YOUSSEF W. CFD modelling development and experimental validation of a phase change material(PCM) heat exchanger with spiral-wired tubes[J]. Energy Conversion and Management, 2017, 157:498-510.
doi: 10.1016/j.enconman.2017.12.036 |
[14] |
TAN G, ZHAO D L. Study of a thermoelectric space cooling system integrated with phase change material[J]. Applied Thermal Engineering, 2015, 86:187-198.
doi: 10.1016/j.applthermaleng.2015.04.054 |
[15] |
LI Y, ZHANG N, DING Z. Investigation on the energy performance of using air-source heat pumpto charge PCM storage tank[J]. Journal of Energy Storage, 2020, 28:101270.
doi: 10.1016/j.est.2020.101270 |
[16] |
ZOU D, MA X, LIU X, et al. Experimental research of an air-source heat pump water heaterusing water-PCM for heat storage[J]. Applied Energy, 2017, 206(15):784-792.
doi: 10.1016/j.apenergy.2017.08.209 |
[17] |
HAN Z, BAI C, XIAO M, et al. Study on the performance of solar-assisted transcritical CO2 heat pump system with phase change energy storage suitable for rural houses[J]. Solar Energy, 2018, 174:45-54.
doi: 10.1016/j.solener.2018.09.001 |
[18] |
WU J H, YE F, LIU C, et al. Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater[J]. Applied Thermal Engineering, 2018, 142:644-655.
doi: 10.1016/j.applthermaleng.2018.06.087 |
[19] |
AGYENIM F, HEWITT N. The development of a finned phase change material(PCM) storage system to take advantage of off-peak electricity tariff for improvement in cost of heat pump operation[J]. Energy and Buildings, 2010, 42(9):1552-1560.
doi: 10.1016/j.enbuild.2010.03.027 |
[20] |
DONG J, LI S, YAO Y, et al. Defrosting performances of a multi-split air source heat pump with phase change thermal storage[J]. International Journal of Refrigeration, 2015, 55:49-59.
doi: 10.1016/j.ijrefrig.2015.03.018 |
[21] | 王长君, 刘硕, 丁薛峰. 相变储能技术在清洁供暖中的应用研究[J]. 华电技术, 2020, 42(11):91-96. |
WANG Changjun, LIU Shou, DING Xuefeng. The study on application of phase change energy storagetechnology in clean heating[J]. Huadian Technology, 2020, 42(11):91-96. | |
[22] | BENLI H, DURMUS A. Evaluation of ground-source heat pump combined latent heat storage systemperformance in greenhouse heating[J]. Energy & Buildings, 2009, 41(2):220-228. |
[23] |
BENLI H. Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating[J]. Energy Conversion and Management, 2011, 52(1):581-589.
doi: 10.1016/j.enconman.2010.07.033 |
[24] |
KELLY N J, TUOHY P G, HAWKES A D. Performance assessment of tariff-based air source heat pumpload shifting in a UK detached dwelling featuring phase change-enhanced buffering[J]. Applied Thermal Engineering, 2014, 71(2):809-820.
doi: 10.1016/j.applthermaleng.2013.12.019 |
[25] | MORENO P, CASTELL A, SOLÉ C, et al. PCM thermal energy storage tanks in heat pump systemf or space cooling[J]. Energy & Buildings, 2014, 82:399-405. |
[26] |
KOELJ R, MLAKAR U, ZAVRL E, et al. An experimental and numerical analysis of an improvedthermal storage tank with encapsulated PCM for use in retrofitted buildings forheating[J]. Energy and Buildings, 2021, 248:111196.
doi: 10.1016/j.enbuild.2021.111196 |
[27] |
ALKHWILDI A, ELHASHMI R, CHIASSON A. Parametric modeling and simulation of low temperatureenergy storage for cold-climate multi-family residences using a geothermal heatpump system with integrated phase change material storage tank[J]. Geothermics, 2020, 86:101864.
doi: 10.1016/j.geothermics.2020.101864 |
[28] |
KAYGUSUZ K, AYHAN T, et al. Solar-assisted heat pump systems and energy storage[J]. Solar Energy, 1991, 47(5):383-391.
doi: 10.1016/0038-092X(91)90032-R |
[29] |
COMAKLI O, KAYGUSUZ K, AYHAN T. Solar-assisted heat pump and energy storage for residential heating[J]. Solar Energy, 1993, 51(5):357-366.
doi: 10.1016/0038-092X(93)90148-H |
[30] |
KAYGUSUZ K. Performance of solar-assisted heat-pump systems[J]. Applied Energy, 1995, 51(2):93-109.
doi: 10.1016/0306-2619(94)00042-D |
[31] | KAYGUSUZ K. Experimental and theoretical investigation of latent heat storage for water based solar heating systems[J]. Energy Conversion & Management, 1995, 36(5):315-323. |
[32] |
KAYGUSUZ K, AYHAN T. Experimental and theoretical investigation of combined solar heat pump system for residential heating[J]. Energy Conversion and Management, 1999, 40(13):1377-1396.
doi: 10.1016/S0196-8904(99)00026-6 |
[33] |
KAYGUSUZ K. Experimental and theoretical investigation of a solar heating system with heat pump[J]. Renewable Energy, 2000, 21(1):79-102.
doi: 10.1016/S0960-1481(00)00003-3 |
[34] | ESEN M, AYHAN T. Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials[J]. Energy Conversion & Management, 1996, 37(12):1775-1785. |
[35] |
ESEN M, DURMU A, DURMU A. Geometric design of solar-aided latent heat store depending on various parameters and phase change materials[J]. Solar Energy, 1998, 62(1):19-28.
doi: 10.1016/S0038-092X(97)00104-7 |
[36] |
QI Q, DENG S, JIANG Y. A simulation study on a solar heat pump heating system with seasonal latent heat storage[J]. Solar Energy, 2008, 82(8):669-675.
doi: 10.1016/j.solener.2008.02.017 |
[37] |
HAN Z, ZHENG M, KONG F, et al. Numerical simulation of solar assisted ground-source heat pump heating system with latent heat energy storage in severely cold area[J]. Applied Thermal Engineering, 2008, 28(11):1427-1436.
doi: 10.1016/j.applthermaleng.2007.09.013 |
[38] |
NIU F X, NI L, QU M L, et al. A novel triple-sleeve energy storage exchanger and its application in an environmental control system[J]. Applied Thermal Engineering, 2013, 54(1):1-6.
doi: 10.1016/j.applthermaleng.2012.11.022 |
[39] |
NIU F, NI L, YAO Y, et al. Performance and thermal charging/discharging features of a phase change material assisted heat pump system in heating mode[J]. Applied Thermal Engineering, 2013, 58(1-2):536-541.
doi: 10.1016/j.applthermaleng.2013.04.042 |
[40] |
QU D, NI L, YAO Y, et al. Reliability verification of a solar-air source heat pump system with PCM energy storage in operating strategy transition[J]. Renewable Energy, 2015, 84:46-55.
doi: 10.1016/j.renene.2015.07.030 |
[41] | FIORENTINI M, COOPER P, MA Z. Development and optimization of an innovative HVAC system withintegrated PVT and PCM thermal storage for a net-zero energy retrofitted house[J]. Energy & Buildings, 2015, 94(7):21-32. |
[42] | REAL A, GARCIA V, DOMENECH L, et al. Improvement of a heat pump based HVAC system with PCM thermal storage for cold accumulation and heat dissipation[J]. Energy & Buildings, 2014, 83:108-116. |
[43] |
NI L, QU D H. An experimental study on performance enhancement of a PCM based solar-assisted air source heat pump system under cooling modes[J]. Applied Thermal Engineering, 2016, 100:434-452.
doi: 10.1016/j.applthermaleng.2016.02.001 |
[44] |
YOUSSEF W, GE Y T, TASSOU S A. Effects of latent heat storage and controls on stability and performance of a solar assisted heat pump system for domestic hot water production[J]. Solar Energy, 2017, 150:394-407.
doi: 10.1016/j.solener.2017.04.065 |
[45] |
WU J, XIAN T, LIU X. All-weather characteristic studies of a direct expansion solarintegrated air source heat pump system based on PCMs[J]. Solar Energy, 2019, 191:34-45.
doi: 10.1016/j.solener.2019.08.057 |
[46] |
WANG Z, WANG F, MA Z, et al. Performance evaluation of a novel frost-free air-source heat pump integrated with phase change materials(PCMs) and dehumidification[J]. Energy Procedia, 2017, 121:134-141.
doi: 10.1016/j.egypro.2017.08.010 |
[47] |
陈尔健, 贾腾, 姚剑, 等. 太阳能空调与热泵技术进展及应用[J]. 华电技术, 2021, 43(11):40-48.
doi: 10.3969/j.issn.1674-1951.2021.11.005 |
CHEN Erjian, JIA Teng, YAO Jian, et al. Progresses and applications of solar air conditioning and heat pump technologies[J]. Huadian Technology, 2021, 43(11):40-48. | |
[48] |
陈健勇, 李浩, 陈颖, 等. 空气源热泵空调技术应用现状及发展前景[J]. 华电技术, 2021, 43(11):25-39.
doi: 10.3969/j.issn.1674-1951.2021.11.004 |
CHEN Jianyong, LI Hao, CHEN Ying, et al. Application status and perspectives of air-source heat pump air conditioning technology[J]. Huadian Technology, 2021, 43(11):25-39. |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 王泽宁, 李文中, 李东辉, 徐泰山, 俞俊. 基于软件定义的新型电力系统分层自治电力平衡模式研究[J]. 综合智慧能源, 2024, 46(7): 1-11. |
[3] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[4] | 黄晓凡, 李佳瑞, 刘晖, 汤效平, 王兹尧, 王彤. 梯次利用动力电池储能系统综合效益分析[J]. 综合智慧能源, 2024, 46(7): 63-73. |
[5] | 李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34. |
[6] | 汤梓涵, 王帅杰, 鞠振河, 雷志奇. 光伏/光热耦合空气源热泵系统性能优化[J]. 综合智慧能源, 2024, 46(4): 34-41. |
[7] | 苏盼盼, 王学涛, 邢利利, 李浩杰, 刘梦杰. 生物质预处理催化热解制备液体燃料研究进展[J]. 综合智慧能源, 2024, 46(3): 1-11. |
[8] | 王永旭, 周天羽, 邓庚庚, 徐钢, 王卓. 配置吸收式热泵的热电联产机组厂级智能运行优化[J]. 综合智慧能源, 2024, 46(3): 20-28. |
[9] | 孟强, 田曦, 熊亚选. 废旧发泡混凝土定型相变材料制备及热性能研究[J]. 综合智慧能源, 2024, 46(3): 29-34. |
[10] | 魏夕凯, 谭效时, 林明, 程俊杰, 向可祺, 丁书欣. 2005—2035年全国电网碳排放因子的计算与预测[J]. 综合智慧能源, 2024, 46(3): 72-78. |
[11] | 李益民, 董海鹰, 丁坤, 王金岩. 考虑长期负荷概率预测的储能多阶段优化配置[J]. 综合智慧能源, 2024, 46(2): 19-27. |
[12] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[13] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[14] | 栗庆根, 孙娜, 董海鹰. 基于改进鲸鱼优化算法的共享储能优化配置研究[J]. 综合智慧能源, 2023, 45(9): 65-76. |
[15] | 刘天阳, 高亚静, 谢典, 赵良. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||