综合智慧能源 ›› 2024, Vol. 46 ›› Issue (1): 18-27.doi: 10.3969/j.issn.2097-0706.2024.01.003
收稿日期:
2023-08-30
修回日期:
2023-11-06
出版日期:
2024-01-25
通讯作者:
*金立(1998),男,硕士生,从事综合能源系统的负荷预测与控制、水电与新能源运行等方面的研究,1983104545@qq.com。作者简介:
张力(1982),男,副教授,硕士生导师,从事综合能源系统设计规划与运行优化研究,zhangl@mail.xhu.edu.cn。
基金资助:
ZHANG Li1(), JIN Li2,*(
), REN Juguang1, LIU Xiaobing1
Received:
2023-08-30
Revised:
2023-11-06
Published:
2024-01-25
Supported by:
摘要:
用能高峰时段,综合能源系统多元负荷受气象因素影响,使其用能需求量短时持续上升,导致供需矛盾加剧;同时,综合能源系统多能耦合转换与蓄放单元的电驱动特点(如冰蓄冷空调、电制冷制冰)致使其用能成本受分时电价影响进一步增加。以供冷季用能高峰时段综合能源系统冷-电供需调控为研究对象,提出一种包含冷负荷需求自身调节与供冷功率主动控制的两阶段递进式调控策略,旨在实现多能供需平衡空间的拓展与用能成本的降低。基于模糊C均值聚类并考虑综合气象因素与分时电价的影响,选取调控时段;在第1阶段构建了温-湿舒适度最佳与冷能需求量最低的多目标负荷调节模型,在第2阶段提出了用能成本最低和运行能耗最小的多目标供冷输出功率主动控制策略;选取某校园综合能源系统实际运行数据进行算例仿真,采用ε-约束法以及多维偏好线性规划方法进行多目标求解,并基于用能舒适度变化的运行能耗、用能成本等指标,对比分析负荷需求在用能高峰时段调控优化前后的效果。结果表明,所提方法在满足用能舒适度的同时,能削减约13%的负荷需求,并降低约1.9%系统用能成本,有效缓解多能供需矛盾,增强系统运行的灵活性。
中图分类号:
张力, 金立, 任炬光, 刘小兵. 计及气象因素与分时电价影响的综合能源系统负荷调控策略研究[J]. 综合智慧能源, 2024, 46(1): 18-27.
ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs[J]. Integrated Intelligent Energy, 2024, 46(1): 18-27.
[1] |
杨颖, 刘友波, 黄媛, 等. 电能替代下考虑需求响应的综合园区风光储配置方法[J]. 电力建设, 2021, 42(10):9-18.
doi: 10.12204/j.issn.1000-7229.2021.10.002 |
YANG Ying, LIU Youbo, HUANG Yuan, et al. Allocation of wind-solar-battery under electric energy substitution in integrated park considering demand response[J]. Electric Power Construction, 2021, 42(10):9-18.
doi: 10.12204/j.issn.1000-7229.2021.10.002 |
|
[2] | 陈忠华, 高振宇, 陈嘉敏, 等. 考虑不确定性因素的综合能源系统协同规划研究[J]. 电力系统保护与控制, 2021, 49(8):32-40. |
CHEN Zhonghua, GAO Zhenyu, CHEN Jiamin, et al. Research on cooperative planning of an integrated energy system considering uncertainty[J]. Power System Protection and Control, 2021, 49(8):32-40. | |
[3] |
UPSHAW C R, RHODES J D, WEBBER M E. Modeling electric load and water consumption impacts from an integrated thermal energy and rainwater storage system for residential buildings in Texas[J]. Applied Energy, 2017, 186:492-586.
doi: 10.1016/j.apenergy.2016.02.130 |
[4] | 曾艾东, 邹宇航, 郝思鹏, 等. 考虑阶梯式碳交易机制的园区工业用户综合需求响应策略[J]. 高电压技术, 2022, 48(11):4352-4363. |
ZENG Aidong, ZOU Yuhang, HAO Sipeng, et al. Comprehensive demand response strategy of industrial users in the park considering the stepped carbon trading mechanism[J] High Voltage Engineering, 2022, 48(11): 4352-4363. | |
[5] | 杨海柱, 李梦龙, 江昭阳, 等. 考虑需求侧电热气负荷响应的区域综合能源系统优化运行[J]. 电力系统保护与控制, 2020, 48(10):30-37. |
YANG Haizhu, LI Menglong, JIANG Zhaoyang, et al. Optimal operation of regional integrated energy system considering demand side electricity heat and natural-gas loads response[J]. Power System Protection and Control, 2020, 48(10): 30-37. | |
[6] | 李政洁, 撖奥洋, 周生奇, 等. 计及综合需求响应的综合能源系统优化调度[J]. 电力系统保护与控制, 2021, 49(21):36-42. |
LI Zhengjie, HAN Aoyang, ZHOU Shengqi, et al. Optimization of an integrated energy system considering integrated demand response[J]. Power System Protection and Control, 2021, 49(21): 36-42. | |
[7] | REN Juguang, ZHANG Li, JIN Li, et al. Operation optimization and analysis of office building integrated energy system considering comprehensive demand response of heat and electricity[C]// Proceedings of 2022 Asian Conference on Frontiers of Power and Energy, 2022: 237-241. |
[8] | 任炬光, 张力, 金立, 等. 考虑可再生能源消纳的建筑综合能源系统日前经济调度模型[J]. 工程科学与技术, 2023, 55(2):160-170. |
REN Juguang, ZHANG Li, JIN Li, et al. Day-ahead economic dispatch model of building integrated energy systems considering the renewable energy consumption[J]. Advanced Engineering Sciences, 2023, 55(2): 160-170. | |
[9] | 唐文虎, 申悦晴, 钱瞳, 等. 双碳目标下城市楼宇群能源系统灵活性量化分析与调控技术研究现状与展望[J]. 高电压技术, 2022, 48(9):3423-3436. |
TANG Wenhu, SHEN Yueqing, QIAN Tong, et al. Research review and prospects of quantitative analysis and regulation technique for flexible resources in urban energy system embedded with building clusters under dual carbon target[J]. Advanced Engineering Sciences, 2022, 48(9): 3423-3436. | |
[10] | 刘蓉晖, 马天天, 高远, 等. 考虑需求侧协同响应的社区综合能源系统低碳经济调度[J]. 上海电力大学学报, 2020, 36(5):421-430. |
LIU Ronghui, MA Tiantian, GAO Yuan, et al. Low carbon economic dispatch of community integrated energy system based on demand side cooperative response J]. Journal of Shanghai University of Electric Power, 2020, 36(5): 421-430. | |
[11] | 张宏业, 吴杰康, 蔡锦健, 等. 考虑空调负荷和柔性热负荷响应的综合能源系统储能鲁棒优化配置[J]. 电网技术, 2022, 46(7):2733-2744. |
ZHANG Hongye, WU Jie, CAI Jinjian, et al. Robust optimal allocation of energy storage in integrated energy system considering demand response of air conditioning load and flexible heating load[J]. Power System Technology, 2022, 46(7): 2733-2744. | |
[12] | 周丽红, 于浩, 李鹏. 考虑居民热负荷主动需求响应的园区综合能源系统分布式优化运行方法[J]. 电网技术, 2023, 47(5):1989-2000. |
ZHOU Lihong, YU Hao, LI Peng. Distributed optimal operation method of park-level integrated energy system considering active demand response of residential heat loads[J]. Power System Technology: 2023, 47(5):1989-2000. | |
[13] | 孙轶恺, 漆淘懿, 张利军, 等. 市场环境下含冰蓄冷空调的综合能源系统优化运行[J]. 南方电网技术, 2022, 16(4): 95-104. |
SUN Yikai, QI Taoyi, ZHANG Lijun, et al. Optimal operation of integrated energy system including ice-storage air-conditioning in power market[J]. Southern Power System Technology, 2022, 16(4): 95-104. | |
[14] | 万典典, 刘智伟, 陈语, 等. 基于DDPG算法的冰蓄冷空调系统运行策略优化[J]. 控制工程, 2022, 29(3):441-446. |
WAN Diandian, LIU Zhiwei, CHEN Yu, et al. Operation strategy optimization of ice storage air conditioning system based on DDPG algorithm[J]. Control Engineering of China, 2022, 29(3): 441-446. | |
[15] | 赵阳, 李兵, 刘文, 等. 计及冰蓄冷的冷热电联供能源系统非线性优化调度方法[J]. 节能, 2022, 41(5):47-52. |
ZHAO Yang, LI Bing, LIU Wen, et al. Nonlinear optimal scheduling method for cooling heating and power system considering ice storage[J]. Energy Conservation, 2022, 41(5):47-52. | |
[16] | ASU. Campus metabolism[EB/OL].(2021-03-21) [2023-08-05]. https://cm.asu.edu/. |
[17] | 任延欢. 基于群智能的冰蓄冷空调负荷预测及运行优化研究[D]. 西安: 西安建筑科技大学, 2020. |
REN Yanhuan. Research on ice storage air conditioning load forecastingand strategy optimization based on insect intelligent[D]. Xi'an: Xi'an University of Architecture and Technology, 2020. | |
[18] | 杨迎军. 基于负荷预测的冰蓄冷空调系统的运行优化研究[D]. 西安: 西安建筑科技大学, 2016. |
YANG Yingjun. Optimal operation research based on cooling load prediction in storage air conditioning system[D]. Xi'an: Xi'an University of Architecture and Technology, 2016. | |
[19] |
金立, 张力, 任炬光, 等. 针对气象敏感型综合能源负荷的收敛交叉映射因果关系分析[J]. 综合智慧能源, 2023, 45(1):23-30.
doi: 10.3969/j.issn.2097-0706.2023.01.003 |
JIN Li, ZHANG Li, REN Juguang, et al. Causality analysis of climate sensitive loads in integrated energy system based on convergence cross-mapping method[J]. Integrated Intelligent Energy, 2023, 45(1):23-30.
doi: 10.3969/j.issn.2097-0706.2023.01.003 |
|
[20] |
金立, 张力, 唐杨, 等. 考虑温湿指数与耦合特征的综合能源负荷短期预测[J]. 综合智慧能源, 2023, 45(7):70-77.
doi: 10.3969/j.issn.2097-0706.2023.07.008 |
JIN Li, ZHANG Li, TANG Yang, et al. Short-term prediction on integrated energy loads considering temperature-humidity index and coupling characteristics[J]. Integrated Intelligent Energy, 2023, 45(7):70-77.
doi: 10.3969/j.issn.2097-0706.2023.07.008 |
|
[21] | NADERI S, HESLOP S, DONG C, et al. Consumer cost savings, improved thermal comfort, and reduced peak air conditioning demand through pre-cooling in Australian housing[J]. Energy & Buildings, 2022, 271:112172. |
[22] | 毕锐, 丁明, 徐志成, 等. 基于模糊C均值聚类的光伏阵列故障诊断方法[J]. 太阳能学报, 2016, 37(3):730-736. |
BI Rui, DING Ming, XU Zhicheng, et al. PV array fault diagnosis based on FCM[J]. Acta Energiae Solaris Sinica, 2016, 37(3):730-736. | |
[23] | 王煜尘, 窦银科, 孟润泉, 等. 基于模糊C均值聚类-变分模态分解和群智能优化的多核神经网络短期负荷预测模型[J]. 高电压技术, 2022, 48(4):1308-1319. |
WANG Yuchen, DOU Yinke, et al. Forecasting model for multicore neural network short-term load based on fuzzy C-mean clustering-variational modal decomposition and chaotic swarm intelligence optimization[J]. High Voltage Engineering, 2022, 48(4):1308-1319. | |
[24] | 岳本江, 郭玉涛, 李强, 等. 2000—2018年神东矿区气候舒适度评价[J]. 陕西林业科技, 2022, 50(2):44-49,55. |
YUE Benjiang, GUO Yutao, LI Qiang, et al. Evaluation of climate comfort in Shendong mining area during 2000—2018[J]. Shanxi Forest Science and Technology, 2022, 50(2):44-49,55. | |
[25] | 孙悦, 吴琼, 李琦芬, 等. 计及成本与能耗的冰蓄冷系统多目标运行优化[J]. 低温与超导, 2021, 49(8):58-65. |
SUN Yue, WU Qiong, LI Qifen, et al. Multi-objective operation optimization of ice storage air conditioning system considering cost and energy consumption[J]. Cryogenics/Refrigeration, 2021, 49(8):58-65. | |
[26] | 叶婧, 林涛, 徐遐龄, 等. 考虑稳态频率约束的含高渗透率风电的孤立电网机组组合[J]. 高电压技术, 2018, 44(4):1311-1318. |
YE Jing, LIN Tao, XU Xialing, et al. Research on unit commitment considering steady state frequency constraints of isolated grids with high permeability wind power[J]. High Voltage Engineering, 2018, 44(4):1311-1318. | |
[27] | NSRDB. NSRDB data viewer[EB/OL].(2021-04-10) [2021-08-13]. https://maps.nrel.gov/nsrdb-viewer/. |
[28] | UES. UniSource energy services[EB/OL].(2022-09-06)[2023-08-13]. https://www.uesaz.com/time-of-use/. |
[29] | 中华人民共和国住房和城乡建设部. 民用建筑供暖通风与空气调节设计规范: GB50736—2012[S]. 北京: 中国建筑工业出版社, 2012. |
[30] | 周天宇, 王升, 张治平, 等. 永磁同步变频离心式冰蓄冷双工况机组运行能效分析[J]. 制冷与空调, 2019, 19(8):69-74,79. |
ZHOU Tianyu, WANG Sheng, ZHANG Zhiping, et al. Analysis on operational energy efficiency of dual-mode permanent-magnetic synchronous frequency-convertible centrifugal water chiller for ice storage[J] Refrigeration and Air-conditioning, 2019, 19(8):69-74,79. | |
[31] |
REN Z G, CHEN D. Modelling study of the impact of thermal comfort criteria on housing energy use in Australia[J]. Applied Energy, 2018, 210:152-166.
doi: 10.1016/j.apenergy.2017.10.110 |
[1] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[2] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[3] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[4] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[5] | 史明明, 朱睿, 刘瑞煌. 交直流电力系统与供热系统联合经济调度[J]. 综合智慧能源, 2024, 46(4): 10-16. |
[6] | 陈勇, 肖雷鸣, 王井南, 吴健. 基于场景扩充的低碳综合能源系统高可靠性容量规划方法[J]. 综合智慧能源, 2024, 46(4): 24-33. |
[7] | 汤梓涵, 王帅杰, 鞠振河, 雷志奇. 光伏/光热耦合空气源热泵系统性能优化[J]. 综合智慧能源, 2024, 46(4): 34-41. |
[8] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
[9] | 钟永洁, 王紫东, 左建勋, 王常青, 李靖霞, 纪陵. 计及多时段尺度与地域分层的多能互补系统经济调度[J]. 综合智慧能源, 2024, 46(4): 52-59. |
[10] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[11] | 徐聪, 胡永锋, 张爱平, 由长福. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53. |
[12] | 李彦高, 林健, 马雨彤. 电价改革形势下电网企业代理购电风险分析及应对策略研究[J]. 综合智慧能源, 2024, 46(3): 79-86. |
[13] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
[14] | 李铂航, 李宏仲, 张民元. 计及负荷特性的综合能源系统低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 72-79. |
[15] | 郁海彬, 高亦凌, 陆增洁, 董帅, 鲁林, 任逸之. 计及需求响应的风-火-储-碳捕集多源参与深度调峰市场的低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 80-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||