综合智慧能源 ›› 2025, Vol. 47 ›› Issue (11): 62-71.doi: 10.3969/j.issn.2097-0706.2025.11.006

• 信息物理系统安全 • 上一篇    下一篇

基于动态弹性分级与5G通信延迟补偿的虚拟电厂紧急切负荷优化策略

卞礼杰(), 马刚(), 陈旭东(), 詹孝升()   

  1. 南京师范大学 电气与自动化工程学院, 南京 210023
  • 收稿日期:2025-09-05 修回日期:2025-10-03 出版日期:2025-11-25
  • 作者简介:卞礼杰(2002),男,硕士生,从事综合能源系统优化调度等方面的研究,2239749260@qq.com
    马刚(1984),男,教授,博士,从事新能源发电及并网、综合能源系统等方面的研究,nnumg@njnu.edu.cn
    陈旭东(2000),男,硕士生,从事综合能源系统优化等方面的研究,2741928845@qq.com
    詹孝升(2002),男,硕士生,从事综合能源系统优化等方面的研究,1478604822@qq.com
  • 基金资助:
    江苏省碳达峰碳中和科技创新专项资金重点项目(BE2022003)

Optimized strategy for emergency load shedding in virtual power plants based on dynamic elastic grading and 5G communication delay compensation

BIAN Lijie(), MA Gang(), CHEN Xudong(), ZHAN Xiaosheng()   

  1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
  • Received:2025-09-05 Revised:2025-10-03 Published:2025-11-25
  • Supported by:
    Key Program of Jiangsu Science and Technology Innovation Fund for Carbon Peak and Carbon Neutrality(BE2022003)

摘要:

虚拟电厂紧急切负荷操作会因负荷识别不精准、通信延迟等出现指令偏差的问题,基于此提出了基于动态弹性分级与5G通信延迟补偿的虚拟电厂紧急切负荷优化模型。引入动态弹性分级机制对负荷特性进行精准识别,为切负荷操作提供基础;叠加5G通信延迟补偿机制,有效降低因通信延迟导致的指令执行偏差,提升切负荷指令执行的精准度;以运行成本最小化为目标,构建目标函数,并在多机制协同优化下对模型进行求解。算例结果表明:动态弹性分级机制与5G通信延迟补偿机制有助于充分发挥优化模型的优势,在提升切负荷指令执行精度的同时,显著降低系统碳排放量。该优化模型能够将切负荷指令的执行误差从0.73 MW降至0.28 MW,系统总成本下降13.3%,碳排放量降低32.0%,有效提高了系统运行的精准性、环保性和经济性,为虚拟电厂紧急切负荷决策提供了兼具理论与实践价值的新方案。

关键词: 虚拟电厂, 紧急切负荷, 动态弹性分级, 5G通信延迟补偿, 需求响应

Abstract:

Emergency load shedding in virtual power plants(VPPs) faces command deviations due to inaccurate load identification and communication delays. Therefore, an optimized model for emergency load shedding in VPPs based on dynamic elastic grading and 5G communication delay compensation was proposed. A dynamic elastic grading mechanism was introduced to accurately identify load characteristics, providing a basis for load shedding operations. A 5G communication delay compensation mechanism was incorporated to effectively reduce command execution deviations caused by communication delays, thereby improving the execution accuracy of load shedding commands. An objective function with the goal of minimizing operational costs was constructed, and the model was solved through multi-mechanism collaborative optimization. Case study results demonstrated that the two mechanisms above helped fully leverage the advantages of the optimized model, significantly improving the execution accuracy of load shedding commands while reducing system carbon emissions. The optimized model could reduce the execution error of load shedding commands from 0.73 MW to 0.28 MW, decrease the total system cost by 13.3%, and lower carbon emissions by 32.0%. The proposed model effectively enhances the operational precision, environmental performance, and economic efficiency of the system, providing a novel solution with both theoretical and practical value for emergency load shedding decision-making in VPPs.

Key words: virtual power plant, emergency load shedding, dynamic elastic grading, 5G communication delay compensation, demand response

中图分类号: