综合智慧能源 ›› 2025, Vol. 47 ›› Issue (4): 73-84.doi: 10.3969/j.issn.2097-0706.2025.04.006

• 电力系统智能化与控制 • 上一篇    下一篇

基于数据驱动方法的磁性元件损耗研究

黄问铉(), 曾浩政(), 林奕津(), 殷林飞*()   

  1. 广西大学 电气工程学院,南宁 530004
  • 收稿日期:2024-12-24 修回日期:2025-01-15 出版日期:2025-04-25
  • 通讯作者: * 殷林飞(1990),男,副教授,博士生导师,博士,从事电力系统运行与分析、人工智能在电力系统的应用等方面的研究,yinlinfei@gxu.edu.cn
  • 作者简介:黄问铉(2000),男,硕士生,从事电力系统运行与分析、人工智能在电力系统的应用等方面的研究,huangwenxuan@st.gxu.edu.cn
    曾浩政 (2000),男,硕士生,从事电力系统优化调度、人工智能在电力系统的应用等方面的研究,2312392004@st.gxu.edu.cn
    林奕津 (2000),女,硕士生,从事电力巡检分析、人工智能在电力巡检的应用等方面的研究,13105022198@163.com
  • 基金资助:
    国家自然科学基金项目(62463001)

Research on the loss of magnetic components based on a data-driven method

HUANG Wenxuan(), ZENG Haozheng(), LIN Yijin(), YIN Linfei*()   

  1. School of Electrical Engineering, Guangxi University, Nanning 530004, China
  • Received:2024-12-24 Revised:2025-01-15 Published:2025-04-25
  • Supported by:
    National Natural Science Foundation of China(62463001)

摘要:

提高功率变换器效率,需对影响功率变换器磁性元件磁芯损耗的因素进行相关分析,并通过回归预测的方法得到特定因素影响下的磁芯损耗。为提高磁芯损耗预测的精度,基于数据驱动方法,采用决策梯度提升模型与袋外误差变化量对磁芯损耗的影响因素进行独立分析。结合K-means聚类方法和轮廓系数法对影响因素进行聚类,分析因素之间组合对磁芯损耗的协同影响,并根据因素的重要性分析结果,使用GhostNet神经网络进行预测。采用多目标遗传算法探索磁性元件在具有最小的磁芯损耗的同时具有最大传输磁能的条件。仿真结果表明:基于GhostNet的磁芯损耗预测方法具有极高的预测精度和良好的泛化性,在测试集上的决定系数为0.986 5,平均绝对误差为2.154 9×104,平均偏差误差为3.418 2×106;多目标遗传算法具有极高的全局搜索能力,可避免算法陷入局部最优,找到更小的帕累托前沿。

关键词: 数据驱动, 磁芯损耗建模, 多目标遗传算法, 磁芯损耗因素分析, 深度神经网络, K-means聚类, 轮廓系数法, 功率变换器

Abstract:

To improve the efficiency of power converters, it is necessary to conduct a correlation analysis of the factors affecting the magnetic core loss of magnetic components in power converters. The core loss under the influence of specific factors can be predicted using regression methods. To improve the accuracy of core loss prediction, a data-driven method was adopted, employing a decision gradient boosting model and out-of-bag error variation to independently analyse the influencing factors. The K-means clustering method combined with the silhouette coefficient method was used to cluster the influencing factors and analyse the synergistic effects of factor combinations on core loss. Based on the importance analysis of these factors, the GhostNet neural network was used for prediction. A multi-objective genetic algorithm was used to explore the conditions under which magnetic components achieved maximum transmitted magnetic energy while minimizing core loss. Simulation results demonstrated that the proposed GhostNet-based core loss prediction method achieved excellent accuracy and strong generalization, with an coefficient of determination of 0.986 5, mean absolute error of 2.154 9×104, and mean bias error of 3.418 2×106 on the test set. Furthermore, the proposed multi-objective genetic algorithm exhibited excellent global search capabilities, effectively avoiding local optima and identifying a smaller Pareto front.

Key words: data-driven, magnetic core loss modeling, multi-objective genetic algorithm, core loss factor analysis, deep neural network, K-means clustering, silhouette coefficient method, power converters

中图分类号: