综合智慧能源 ›› 2022, Vol. 44 ›› Issue (8): 33-42.doi: 10.3969/j.issn.2097-0706.2022.08.003
朱沙沙1(), 李宗宝1, 邓雅恬2, 王欣1,*(
), 贾礼超2
收稿日期:
2022-05-30
修回日期:
2022-08-10
出版日期:
2022-08-25
通讯作者:
* 王欣(1984),男,特聘教授,博士,从事固体氧化物燃料电池方面的研究, xwang@wtu.edu.cn。作者简介:
朱沙沙(1995),女,在读硕士研究生,从事固体氧化物燃料电池方面的研究, z_shasha2021@163.com。
基金资助:
ZHU Shasha1(), LI Zongbao1, DENG Yatian2, WANG Xin1,*(
), JIA Lichao2
Received:
2022-05-30
Revised:
2022-08-10
Published:
2022-08-25
摘要:
合金纳米颗粒(NPs)由于多金属之间的协同效应使其具有优异的催化性能、抗积碳和抗硫毒化性能,被广泛应用于固体氧化物燃料电池(SOFC)阳极。NPs在还原气氛下从氧化物支撑体内原位析出,提升了纳米催化剂稳定性的同时使支撑体内富含氧空位,进一步提升阳极的电子电导率和离子电导率。NPs的优异催化性能使SOFC可以碳氢化合物为燃料并具备长期工作稳定性成为可能。主要综述了合金催化剂在SOFC阳极中的发展现状并据此提出了展望。
中图分类号:
朱沙沙, 李宗宝, 邓雅恬, 王欣, 贾礼超. 合金纳米颗粒在碳氢燃料SOFC阳极中的应用[J]. 综合智慧能源, 2022, 44(8): 33-42.
ZHU Shasha, LI Zongbao, DENG Yatian, WANG Xin, JIA Lichao. Application of alloy nanoparticles in the anodes of hydrocarbon solid oxide fuel cells[J]. Integrated Intelligent Energy, 2022, 44(8): 33-42.
表1
合金作为阳极催化剂的SOFC电池性能一览
阳极材料 | 燃料 | 温度/℃ | OCV/V | P/(mW·cm-2) | 稳定性/h | 参考文献 |
---|---|---|---|---|---|---|
STFN | 湿H2 | 800 | 1.00 | 950 | 150~200 | [ |
Fe-Ni @LCF CrN | CO2/CO | 800 | 0.85 | — | — | [ |
Ni-Fe/SFNM | CH4/CO2 | 850 | — | — | — | [ |
FeNi3@PrBa(Fe,Ni)1.9Mo0.1O5+δ | H2/ CO | 750 | 0.85 | 520 | 100 | [ |
Fe0.64-Ni0.46/SLF | H2和H2S | 700 | 0.70 | 400 | 40 | [ |
Ni-Fe/LaxSryFeOz | 合成气 | 700 | 1.00 | 550 | 10 | [ |
R-LSFMNx(x=0.03~0.07) | 合成气 | 700 | 1.10 | 397 | 12 | [ |
NiFe-SFM | CO/CO2 | 800 | 1.00 | 443 | 40 | [ |
LSFN/Ni-YSZ | CH4 | 850 | 1.15 | 539 | >120 | [ |
NF/Ni-YSZ | 煤矿瓦斯 | 800 | 1.16 | 660 | >100 | [ |
LSFMn+NiSDC | 干CH4 | 850 | 1.33 | 668 | >120 | [ |
LLSFN0.05 | 湿C2H6 | 750 | 0.90 | 424 | 40 | [ |
Fe3Ni2/RP-LSMF | H2S和H2 | 800 | 0.90 | 566 | 40 | [ |
RP-PSNF-NFA | 湿C3H8 | 800 | 1.10 | 770 | 60 | [ |
Ni40-Fe60 /SDC | NH3 | 700 | 1.20 | 370 | — | [ |
RP-SFM@CF-SDC | C3H8 | 800 | 0.80 | 670 | 20 | [ |
CoFe-R.P.LSCF | H2 | 800 | 1.20 | 729 | — | [ |
La0.3Sr0.7Cr0.3Fe0.6Co0.1O3-δ | C3H8 | 750 | 1.10 | 350 | 130 | [ |
Co-Fe@SFMCo-SDC | C3H8 | 800 | 0.90 | 161 | 68 | [ |
Ni1-xCox-YSZ(x=0.03) | 湿H2 | 800 | 1.10 | 815 | — | [ |
SnNi/YSZ | 湿CH4 | 800 | 1.10 | 1 010 | >120 | [ |
Ni-Mo/YSZ | 异辛烷/空气 | 750 | 1.01 | 452 | 15 | [ |
(Pr0.5Sr0.5)0.9Fe0.9Ru0.1O3-δ | 湿H2 | 800 | 1.07 | 560 | >100 | [ |
(Pr0.5Sr0.5)0.9Fe0.8Ru0.1Nb0.1O3-δ | C3H8 | 800 | 1.10 | 537 | >100 | [ |
RuFe@Sr2Fe1.4Ru0.1Mo0.5O6-δ | CO2 | 800 | 1.20 | — | 1 000 | [ |
Fe5Mo5/La2O3 | NH3 | 650 | — | — | >130 | [ |
CNFO 0.1 | H2 | 800 | 1.14 | 611 | 150 | [ |
Ni0.6Cu0.4-xZnx | H2 | 600 | 0.95 | 624 | 8 | [ |
NiFe-ZrO2/Cu | CH4/O2 | 650 | 1.00 | 1 165 | 100 | [ |
LSFN-GDC | 湿H2 | 800 | 1.11 | 349 | 200 | [ |
Ni-Fe/SrLaFeO4 | 湿H2 | 800 | 1.02 | 830 | — | [ |
FeNi3/RP-LSFN | H2S/H2 | 800 | 0.90 | 549 | 20 | [ |
LSCNi-Fe | H2S/合成气 | 800 | 0.90 | 560 | 24 | [ |
[1] |
FU X Z, LIN J Y, XU S, et al. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode[J]. Physical Chemistry Chemical Physics, 2011, 13(43):19615-19623.
doi: 10.1039/c1cp22837d |
[2] | 韩敏芳, 蒋先锋, 彭苏萍. 高温固体氧化物燃料电池——原理、设计和应用[M]. 北京: 科学出版社, 2007. |
[3] |
WEI K, WANG X, BUDIMAN R, et al. Progress in Ni-based anode materials for direct hydrocarbon solid oxide fuel cells[J]. Journal of Materials Science, 2018, 53(12):8747-8765.
doi: 10.1007/s10853-018-2205-8 |
[4] |
KHAN M S, LEE S B, SONG R H, et al. Fundamental mechanisms involved in the degradation of nickel-yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation:A review[J]. Ceramics International, 2016, 42(1):35-48.
doi: 10.1016/j.ceramint.2015.09.006 |
[5] |
KWON O, KIM K, JOO S, et al. Self-assembled alloy nanoparticles in a layered double perovskite as a fueloxidation catalyst for solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(33):15947-15953.
doi: 10.1039/C8TA05105D |
[6] |
KWON O, SENGODAN S, KIM K, et al. Exsolution trends and cosegregation aspects of self-grown catalyst nanoparticles in perovskites[J]. Nature communications, 2017, 8(1):1-7.
doi: 10.1038/s41467-016-0009-6 |
[7] |
ZHU T, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes:Achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2(3):478-496.
doi: 10.1016/j.joule.2018.02.006 |
[8] |
NIKOLLA E, SCHWANK J, LINIC S. Promotion of the long-term stability of reforming Ni catalysts by surface alloying[J]. Journal of Catalysis, 2007, 250(1):85-93.
doi: 10.1016/j.jcat.2007.04.020 |
[9] |
PARK E W, MOON H, PARK M, et al. Fabrication and characterization of Cu-Ni-YSZ SOFC anodes for direct use of methane via Cu-electroplating[J]. International Journal of Hydrogen Energy, 2009, 34(13):5537-5545.
doi: 10.1016/j.ijhydene.2009.04.060 |
[10] |
KAN H, LEE H. Enhanced stability of Ni-Fe/GDC solid oxide fuel cell anodes for dry methane fuel[J]. Catalysis Communications, 2010, 12(1):36-39.
doi: 10.1016/j.catcom.2010.07.014 |
[11] |
JIANG H L, XU Q. Recent progress in synergistic catalysis over heterometallic nanoparticles[J]. Journal of Materials Chemistry, 2011, 21(36):13705-13725.
doi: 10.1039/c1jm12020d |
[12] |
ANSARI H M, BASS A S, AHMAD N, et al. Unraveling the evolution of exsolved Fe-Ni alloy nanoparticles in Ni-doped La0.3Ca0.7Fe0.7Cr0.3O3-δand their role in enhancing CO2-CO electrocatalysis[J]. Journal of Materials Chemistry A, 2022, 10,2280-2294
doi: 10.1039/D1TA07552G |
[13] |
INGRAM D B, LINIC S. First-principles analysis of the activity of transition and noble metals in the direct utilization of hydrocarbon fuels at solid oxide fuel cell operating conditions[J]. Journal of the Electrochemical Society, 2009, 156(12):B1457.
doi: 10.1149/1.3240101 |
[14] |
CARRILLO A J, SERRA J M. Exploring the Stability of Fe-Ni Alloy nanoparticles exsolved from double-layered perovskites for dry reforming of methane[J]. Catalysts, 2021, 11(6):741.
doi: 10.3390/catal11060741 |
[15] |
XUE S, SHI N, WAN Y, et al. Novel carbon and sulfur-tolerant anode material FeNi3@PrBa(Fe,Ni)1.9Mo0.1O5+δ for intermediate temperature solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(38):21783-21793.
doi: 10.1039/C9TA07027C |
[16] |
WANG Z, YIN Y M, YU Y, et al. Roles of FeNi nanoparticles and SrLaFeO4 substrate in the performance and reliability of a composite anode prepared through in-situ exsolution for intermediate temperature solid oxide fuel cells(I)[J]. International Journal of Hydrogen Energy, 2018, 43(22):10440-10447.
doi: 10.1016/j.ijhydene.2018.04.090 |
[17] |
YAO X, ASGHAR M I, ZHAO Y, et al. Coking resistant Ni-La0.8Sr0.2FeO3 composite anode improves the sta-bility of syngas-fueled SOFC[J]. International Journal of Hydrogen Energy, 2021, 46(15):9809-9817.
doi: 10.1016/j.ijhydene.2020.06.091 |
[18] |
LI J, YU Y, YIN Y M, et al. A novel high performance composite anode with in situ growth of Fe-Ni alloy nanoparticles for intermediate solid oxide fuel cells[J]. Electrochimica Acta, 2017, 235:317-322.
doi: 10.1016/j.electacta.2017.03.103 |
[19] | LI Y, LI Y, ZHANG S, et al. Mutual conversion of CO-CO2 on a perovskite fuel electrode with endogenous alloy nanoparticles for reversible solid oxide cells[J]. ACS Applied Materials & Interfaces, 2022, 14(7):9138-9150. |
[20] |
TSAI H C, MOROZOV S I, YU T H, et al. First-principles modeling of Ni4M (M‖Co,Fe,and Mn)alloys as solid oxide fuel cell anode catalyst for methane reforming[J]. The Journal of Physical Chemistry C, 2016, 120(1):207-214.
doi: 10.1021/acs.jpcc.5b06847 |
[21] |
LV X, CHEN H, ZHOU W, et al. Direct-methane solid oxide fuel cells with an in situ formed Ni-Fe alloy composite catalyst layer over Ni-YSZ anodes[J]. Renewable Energy, 2020, 150:334-341.
doi: 10.1016/j.renene.2019.12.126 |
[22] |
WEI K, WANG X, ZHU H, et al. Clean and stable conversion of oxygen-bearing low-concentration coal mine gas by solid oxide fuel cells with an additional reforming layer[J]. Journal of Power Sources, 2021, 506:230208.
doi: 10.1016/j.jpowsour.2021.230208 |
[23] |
DURANTI L, LUISETTO I, CASCIARDI S, et al. Multi-functional, high-performing fuel electrode for dry methane oxidation and CO2 electrolysis in reversible solid oxidecells[J]. Electrochimica Acta, 2021, 394:139163.
doi: 10.1016/j.electacta.2021.139163 |
[24] |
ZHAI S, XIE H, CHEN B, et al. A rational design of FeNi alloy nanoparticles and carbonate-decorated perovskite as a highly active and coke-resistant anode for solid oxide fuel cells[J]. Chemical Engineering Journal, 2022, 430:132615.
doi: 10.1016/j.cej.2021.132615 |
[25] |
XU J, WU M, SONG Z, et al. In situ growth of LaSr(Fe,Mo)O4 ceramic anodes with exsolved Fe-Ni nanoparticles for SOFCs:Electrochemical performance andstability in H2,CO,and syngas[J]. Journal of the European Ceramic Society, 2021, 41(8):4537-4551.
doi: 10.1016/j.jeurceramsoc.2021.03.016 |
[26] |
TAN T, QIN M, LI K, et al. In-situ exsolved NiFealloy nanoparticles on Pr0.8Sr1.2(NiFe)O4-δ for direct hydrocarbon fuel solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(53):29407-29416.
doi: 10.1016/j.ijhydene.2020.07.250 |
[27] |
AKIMOTO W, FUJIMOTO T, SAITO M, et al. Ni-Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells[J]. Solid State Ionics, 2014, 256:1-4.
doi: 10.1016/j.ssi.2013.12.026 |
[28] |
FIUZA R, DA S, BOAVENTURA J. Development of Fe-Ni/YSZ-GDC electrocatalysts for application as SOFC anodes:XRD and TPR characterization and evaluation in the ethanol steam reforming reaction[J]. International Journal of Hydrogen Energy, 2010, 35(20):11216-11228.
doi: 10.1016/j.ijhydene.2010.07.026 |
[29] |
XI X, CAO Z S, SHEN X Q, et al. In situ embedding of CoFe nanocatalysts into Sr3FeMoO7 matrix as high-performance anode materials for solid oxide fuel cells[J]. Journal of Power Sources, 2020, 459:228071.
doi: 10.1016/j.jpowsour.2020.228071 |
[30] |
PARK S, HAN H, CHOI J, et al. Ruddlesden-Popper oxide (La0.6Sr0.4)2(Co,Fe)O4 with exsolved CoFe nanoparticles for a solid oxide fuel cell anode catalyst[J]. Energy Technology, 2021, 9(7):2100116.
doi: 10.1002/ente.202100116 |
[31] | LAI K Y, MANTHIRAM A. Self-regenerating Co-Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells[J]. Chemistryof Materials, 2018, 30(8):2515-2525. |
[32] |
YU N, LIU T, CHEN X, et al. Co-generation of liquid chemicals and electricity over Co-Fe alloy/perovskite anode catalyst in a propane fueled solid oxide fuel cell[J]. Separation and Purification Technology, 2022, 291:120890.
doi: 10.1016/j.seppur.2022.120890 |
[33] | GUO T, DONG X, SHIROLKAR M M, et al. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells[J]. ACS Applied Materials& Interfaces, 2014, 6(18):16131-16139. |
[34] |
CESARIO M R, SOUZA G S, LOUREIRO F J A, et al. Synthesis of Co-Ni and Cu-Ni based-catalysts for dry reforming of methane as potential components for SOFC anodes[J]. Ceramics International, 2021, 47(23):33191-33201.
doi: 10.1016/j.ceramint.2021.08.220 |
[35] |
GRGICAK C M, PAKULSKA M M, O'BRIEN J S, et al. Synergistic effects of Ni1-xCox-YSZ and Ni1-xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S[J]. Journal of Power Sources, 2008, 183(1):26-33.
doi: 10.1016/j.jpowsour.2008.05.002 |
[36] |
TRIMM D L. Catalysts for the control of coking during steam reforming[J]. Catalysis Today, 1999, 49(1-3):3-10.
doi: 10.1016/S0920-5861(98)00401-5 |
[37] |
MYUNG J, KIM S D, SHIN T H, et al. Nanocomposite structural Ni-Sn alloy anodes for high performance and durability of direct methane-fueled SOFCs[J]. Journal of Materials Chemistry A, 2015, 3(26):13801-13806.
doi: 10.1039/C4TA06037G |
[38] |
WANG W, SU C, WU Y, et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chemical Reviews, 2013, 113(10):8104-8151.
doi: 10.1021/cr300491e |
[39] |
NIKOLLA E, SCHWANK J, LINIC S. Measuring and relating the electronic structures of nonmodel supported catalytic materials to their performance[J]. Journal of the American Chemical Society, 2009, 131(7):2747-2754.
doi: 10.1021/ja809291e |
[40] |
KAN H, LEE H. Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC[J]. Applied Catalysis B:Environmental, 2010, 97(1-2):108-114.
doi: 10.1016/j.apcatb.2010.03.029 |
[41] |
ZUO P, FU Z, YANG Z. First-principles study on the mechanism of coking inhibition by the Ni(111)surface doped with IB-group metals at the anode of solid oxide fuel cells[J]. Journal of power sources, 2013, 242:762-767.
doi: 10.1016/j.jpowsour.2013.05.151 |
[42] |
PATIL S P, JADHAV L D, CHOURASHIYA M. Investigation of quality and performance of Cu impregnated NiO-GDC as anode for IT-SOFCs[J]. Open Ceramics, 2022, 9:100230.
doi: 10.1016/j.oceram.2022.100230 |
[43] | BONURA G, CANNILLA C, FRUSTERI F. Ceria-gadolinia supported NiCu catalyst: A suitable system for dry reforming of biogas to feed a solid oxide fuel cell (SOFC)[J]. Applied Catalysis B:Environmental, 2012, 121:135-147. |
[44] |
LI P, DONG R, YANG P, et al. Performance enhanced of NiCe0.8Sm0.2O1.9 hydrogen electrode for reversible solid oxide cells with cadmium substitution[J]. Journal of Electroanalytical Chemistry, 2021, 882:115018.
doi: 10.1016/j.jelechem.2021.115018 |
[45] |
BKOUR Q, CHE F, LEE K M, et al. Enhancing the partial oxidation of gasoline with Mo-doped Ni catalysts for SOFC applications:An integrated experimental and DFT study[J]. Applied Catalysis B:Environmental, 2020, 266:118626.
doi: 10.1016/j.apcatb.2020.118626 |
[46] |
BOLDRIN P, RUIZ-TREJO E, MERMELSTEIN J, et al. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials,incorporating lessons from heterogeneous catalysis[J]. Chemical reviews, 2016, 116(22):13633-13684.
doi: 10.1021/acs.chemrev.6b00284 |
[47] | SAPOUNTZI F M, ZHAO C, BORÉAVE A, et al. Sulphur tolerance of Au-modified Ni/GDC during catalytic methane steam reforming[J]. Catalysis Science & Technology, 2018, 8(6):1578-1588 |
[48] |
QIN M, TAN T, LI K, et al. In-situ exsolved FeRualloy nanoparticles on Ruddlesden-Popper oxides for direct hydrocarbon fuel solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(41):21464-21472.
doi: 10.1016/j.ijhydene.2020.05.242 |
[49] |
QIN M, XIAO Y, YANG H, et al. Ru/Nb co-doped perovskite anode:Achieving good coking resistance in hydrocarbon fuels via core-shell nanocatalysts exsolution[J]. Applied Catalysis B:Environmental, 2021, 299: 120613.
doi: 10.1016/j.apcatb.2021.120613 |
[50] |
LV H, LIN L, ZHANG X, et al. Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6-δ via repeated redox manipulations for CO2 electrolysis[J]. Nature Communications, 2021, 12(1):1-11.
doi: 10.1038/s41467-020-20314-w |
[51] |
LORENZUT B, MONTINI T, Bevilacqua M, et al. FeMo-based catalysts for H2 production by NH3 decomposition[J]. Applied Catalysis B:Environmental, 2012, 125:409-417.
doi: 10.1016/j.apcatb.2012.06.011 |
[52] |
SANTAYA M, TROIANI H E, CANEIRO A, et al. Ternary Ni-Co-Fe exsolved nanoparticles/perovskite system for energy applications:Nanostructure characterization and electrochemical activity[J]. ACS Applied Energy Materials, 2020, 3(10):9528-9533.
doi: 10.1021/acsaem.0c01997 |
[53] |
KANG B S, MATSUDA J, ISHIHARA T. Cu-Fe-Ni nanoalloy particles obtained by exsolution from Cu(Ni)Fe2O4as active anode for SOFCs[J]. Journal of Materials Chemistry A, 2019, 7(45):26105-26115.
doi: 10.1039/C9TA09482B |
[54] |
GAO Z, MAO Z, WANG C, et al. Development of trimetallic Ni-Cu-Zn anode for low temperature solid oxide fuel cells with composite electrolyte[J]. International Journal of Hydrogen Energy, 2010, 35(23):12897-12904.
doi: 10.1016/j.ijhydene.2010.08.078 |
[55] |
WANG W, ZHU H, YANG G, et al. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells[J]. Journal of Power Sources, 2014, 258:134-141.
doi: 10.1016/j.jpowsour.2014.02.008 |
[56] |
LING Y, LIU L, ZHOU S, et al. Leveraging in-situ formation of Ni-Fe nanoparticles to promote the catalytic performance of Ruddlesden-Popper based electrode for symmetrical solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(53):27149-27155.
doi: 10.1016/j.ijhydene.2021.05.177 |
[57] | WU X, YU Y, CHEN Y, et al. Construction of multifunctional nanoarchitectures in one step on a composite fuel catalyst through in situ exsolution of La0.5Sr0.5Fe0.8Ni0.1Nb0.1O3-δ[J]. ACS Applied Materials & Interfaces, 2020, 12(31):34890-34900. |
[58] | WU N, WANG W, ZHONG Y, et al. Nickel-iron alloy nanoparticle-decorated K2NiF4-type oxide as an efficient and sulfur-tolerant anode for solid oxide fuel cells[J]. Chem Electro Chem, 2017, 4(9):2378-2384. |
[59] |
SUN Y F, LI J H, CUI L, et al. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys:A novel coking-tolerant fuel cell anode catalyst[J]. Nanoscale, 2015, 7(25):11173-11181.
doi: 10.1039/C5NR02518D |
[1] | 杨磊, 王睿, 马丽丽, 孙宁, 李雪莲, 陈婷, 王绍荣, 史彩霞. 钙和铁共掺杂PrBaCo2O5+δ作为固体氧化物燃料电池阴极的研究[J]. 综合智慧能源, 2024, 46(7): 47-52. |
[2] | 苏盼盼, 王学涛, 邢利利, 李浩杰, 刘梦杰. 生物质预处理催化热解制备液体燃料研究进展[J]. 综合智慧能源, 2024, 46(3): 1-11. |
[3] | 苏砚鑫, 王学涛, 邢利利, 李浩杰, 张兴宇. 前驱体对Ni/ZSM-5催化重整松木屑制氢性能的影响[J]. 综合智慧能源, 2023, 45(5): 32-38. |
[4] | 陈文轩, 李学琴, 刘鹏, 李艳玲, 卢岩, 雷廷宙. 催化生物质焦油模型化合物热解规律的研究[J]. 综合智慧能源, 2023, 45(5): 63-69. |
[5] | 李艳红, 沈明忠, 郑立明, 叶骏. 用于电解水制氢的单原子催化剂研究综述[J]. 综合智慧能源, 2023, 45(3): 74-80. |
[6] | 高圆, 李智, 李甲鸿, 高九涛, 李成新, 李长久. 金属支撑固体氧化物燃料电池技术进展[J]. 综合智慧能源, 2022, 44(8): 1-24. |
[7] | 罗丽琦, 王月, 钟海军, 李庆勋, 谢广元, 王绍荣. 固体氧化物燃料电池热电联供系统设计[J]. 综合智慧能源, 2022, 44(8): 25-32. |
[8] | 韩倩雯, 张琨, 陈晓阳, 朱腾龙. La/Ni共掺杂SrTi0.35Fe0.65O3-δ对称电极用于SOEC共电解H2O/CO2研究[J]. 综合智慧能源, 2022, 44(8): 43-49. |
[9] | 杨莹, 张雁祥, 闫牧夫. 中低温固体氧化物燃料电池电解质制备方法研究进展[J]. 综合智慧能源, 2022, 44(8): 50-57. |
[10] | 曹加锋, 李欣然, 邵善德, 冀月霞, 邵宗平. 质子陶瓷燃料电池稳定性研究综述[J]. 综合智慧能源, 2022, 44(8): 58-67. |
[11] | 许阳森, 张磊, 毕磊. 中温质子导体固体氧化物燃料电池的发展与挑战[J]. 综合智慧能源, 2022, 44(8): 68-74. |
[12] | 陈晗钰, 周晓亮, 刘立敏, 钱欣源, 王宙, 何非凡, 绳阳. 质子导体固体电解池电解水制氢研究进展[J]. 综合智慧能源, 2022, 44(8): 75-85. |
[13] | 陈勇, 苏军划, 汪洋. 国内二氧化碳加氢合成甲烷应用可行性分析[J]. 综合智慧能源, 2022, 44(6): 86-90. |
[14] | 张一民, 康建立, 赵乃勤. 过渡金属基电解水催化剂的发展现状及展望[J]. 综合智慧能源, 2022, 44(5): 15-29. |
[15] | 吴林芮, 刘璐, 孟瑜, 李岩, 胡南, 徐海龙, 陈美琦, 郑武康. 锌-空气电池阴极碳基催化剂材料研究进展[J]. 综合智慧能源, 2022, 44(4): 65-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||