综合智慧能源 ›› 2023, Vol. 45 ›› Issue (5): 24-31.doi: 10.3969/j.issn.2097-0706.2023.05.003
收稿日期:
2023-01-03
修回日期:
2023-04-01
出版日期:
2023-05-25
通讯作者:
*代建军(1971),男,教授,博士,从事固废清洁转化与综合利用、流化床反应器、微波热解、炭基材料制备与应用等方面的研究,jjdai@mail.buct.edu.cn。作者简介:
范德锴(2000),女,在读硕士研究生,从事固废处理与转化方面的研究,2022200238@buct.edu.cn。
基金资助:
FAN Dekai(), FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun*(
)
Received:
2023-01-03
Revised:
2023-04-01
Published:
2023-05-25
Supported by:
摘要:
纤维素是生物质的重要组成部分,而热解技术是一种具有应用前景的高值转化技术,利用纤维素热解来生产各种燃料和高值化学品对未来化工产业的发展具有重要意义。对纤维素热解机理和模型进行研究有助于对纤维素热解过程和热解产物进行分布调控。因此,以纤维素的热解机理和热解动力学模型为基础,概括了纤维素热解过程中热解产物(热解气、热解炭、热解油) 的应用,进行了以热解油为基础,选择性生产高值化学品的研究。分析不同催化剂对于制备左旋葡萄糖酮(LGO)、1-羟基-3,6-二氧杂双环[3.2.1]辛-2-酮(LAC)、糠醛、芳烃和酚类的应用,总结纤维素催化热解制备这些增值化学品的最佳条件,最后指出纤维素热解制备高值化学品研究中存在的问题,并对以后的研究工作进行了展望。
中图分类号:
范德锴, 付洁, 刘洋, 周春宝, 代建军. 纤维素热解制备高值化学品的研究综述[J]. 综合智慧能源, 2023, 45(5): 24-31.
FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis[J]. Integrated Intelligent Energy, 2023, 45(5): 24-31.
表1
纤维素热解产生脱水糖
催化剂 | 温度/℃ | w(LGO)/% | w(LG)/% | w(LAC)/% | 结论 | 文献 |
---|---|---|---|---|---|---|
H3PO4 | 350 | 22.30 | 0.06 | — | 热解产物中LGO/LG的比例由磷酸的浓度决定 | [ |
SO42-/TiO2-Fe3O4 | 300 | 15.43 | — | — | 固体酸催化剂代替传统液体酸 | [ |
[EMIM]CH3C6H4SO3 | 300 | 29.70 | — | — | [ | |
极性非质子溶剂(THF)、γ-戊内酯乙酸乙酯、丙酮和乙醇) | 210 | 51.00 | — | — | 6.9 MPa THF的低沸点(66 ℃) | [ |
Al2O3-TiO2 | 350 | 22.00 | — | 8.60 | 使LAC容易从生物油中分离 | [ |
表2
纤维素热解产芳烃
催化剂 | 温度/℃ | 烃类产率 | 结论 | 文献 |
---|---|---|---|---|
5A,SAPO-34,HY,BETA和HZSM-5 | 500 | HZSM-5:21.1% | 沸石孔结构与酸位点之间作用对芳烃产率有影响 | [ |
1%Ni-0.5mol/LHF-Z5 | 500 | 31.3% | HF可以在保留酸位的同时产生中孔,使含氧物种进入裂解并形成芳烃 | [ |
NaOH,Na2CO3,TPAOH-ZSM-5 | — | Na2CO3-ZSM-5:38.2% | Na2CO3使高价值轻芳烃(如苯、甲苯和二甲苯)的选择性增加,大芳烃的选择性降低 | [ |
ZSM-5(2 μm,200 nm,50 nm) | 600 | ZSM-5-200 nm:38.4 % | 200 nm的ZSM-5上获得芳烃最大产率 | [ |
[1] | 张东旺, 范浩东, 赵冰, 等. 国内外生物质能源发电技术应用进展[J]. 华电技术, 2021, 43(3):70-75. |
ZHANG Dongwang, FAN Haodong, ZHAO Bing, et al. Development of biomass power generation technology at home and abroad[J]. Huadian Technology, 2021, 43(3):70-75. | |
[2] |
WANG Y, FAN M, ZHU L, et al. Enhancement of Bio-based para-xylene selectivity in catalytic fast pyrolysis of cellulose using a surface-modified Mg/P/HZSM-5 catalyst[J]. Chemical Research in Chinese Universities, 2019, 35(3):449-456.
doi: 10.1007/s40242-019-9024-6 |
[3] | 程毅, 屈一新, 庄抗, 等. 木质纤维生物质热解及中间产物缩合机理研究进展[J]. 现代化工, 2021, 41(2):28-32,37. |
CHENG Yi, QU Yixin, ZHUANG Kang, et al. Research progress on mechanism of lignocellulose pyrolysis and intermediates condensation[J]. Modern Chemical Industry, 2021, 41(2):28-32,37. | |
[4] | 苏琼, 肖波, 汪莹莹. 纤维素类生物质热解影响因素分析[J]. 能源研究与信息, 2007(1):11-15. |
SU Qiong, XIAO Bo, WANG Yingying. Study on the effects of operating conditions on cellulosic-biomass pyrolysis[J]. Energy Research and Information, 2007(1):11-15. | |
[5] |
姬文心, 曾鸣, 丛宏斌, 等. 生物质热解反应装置研究现状及展望[J]. 生物质化学工程, 2019, 53(3):46-58.
doi: 10.3969/j.issn.1673-5854.2019.03.007 |
JI Wenxin, ZENG Ming, CONG Hongbin, et al. Research status and prospect of biomass pyrolysis reactor[J]. Biomass Chemical Engineering, 2019, 53(3):46-58.
doi: 10.3969/j.issn.1673-5854.2019.03.007 |
|
[6] |
白斌, 周卫红, 丁毅飞, 等. 纤维素热解动力学分析方法研究[J]. 生物质化学工程, 2017, 51(4):8-16.
doi: 10.3969/j.issn.1673-5854.2017.04.002 |
BAI Bin, ZHOU Weihong, DING Yifei, et al. Analysis method of cellulose pyrolysis dynamics[J]. Biomass Chemical Engineering, 2017, 51(4):8-16.
doi: 10.3969/j.issn.1673-5854.2017.04.002 |
|
[7] |
高子翔, 张胜南, 易维明. 纤维素典型热解产物生成机理研究进展[J]. 生物质化学工程, 2019, 53(5):57-66.
doi: 10.3969/j.issn.1673-5854.2019.05.010 |
GAO Zixiang, ZHANG Shengnan, YI Weiming. Research progress in formation mechanism of typical pyrolysis products of cellulose[J]. Biomass Chemical Engineering, 2019, 53(5):57-66.
doi: 10.3969/j.issn.1673-5854.2019.05.010 |
|
[8] |
MOHAN D, CHARLES U, PITTMAN J. et al. Pyrolysis of Wood/Biomass for Bio-oil:A critical review[J]. Energy Fuels, 2006, 20(3):848-889.
doi: 10.1021/ef0502397 |
[9] |
ATALLA R, VANDERHART D. Native cellulose:A composite of two distinct crystalline forms[J]. Science, 1984, 223(4633):283-285.
doi: 10.1126/science.223.4633.283 |
[10] |
HABIBI Y, LUCIA L, ROJAS O. Cellulose nanocrystals: Chemistry,self-assembly,and applications[J]. Chemical Reviews, 2010, 110(6):3479-3500.
doi: 10.1021/cr900339w |
[11] |
LI H, WANG Q, ZHANG L, et al. Influence of the degrees of polymerization of cellulose on the water absorption performance of hydrogel and adsorption kinetics[J]. Polymer Degradation and Stability, 2019.DOI:10.1016/j.polymdegradstab.2019.108958.
doi: 10.1016/j.polymdegradstab.2019.108958 |
[12] | KILZER R, BROIDO A. Speculations on the nature of cellulose pyrolysis[J]. Pyrodynamics, 1965(2):152-157. |
[13] | BROIDO A. Kinetics of solid-phase cellulose pyrolysis[J]. Thermal Uses and Properties of Carbonhydrates and Lignin, 1976:19-36. |
[14] |
BRADBURY A, SAKA I, SHAFIZADEH F. A kinetic model for pyrolysis of cellulose[J]. Journal of Applied Polymer Science, 1979, 23(11):3271-3280.
doi: 10.1002/app.1979.070231112 |
[15] | 李承宇, 张军, 袁浩然, 等. 纤维素热解转化的研究进展[J]. 燃料化学学报, 2021, 49(12):1733-1751. |
LI Chengyu, ZHANG Jun, YUAN Haoran, et al. Advance on the pyrolytic transformation of cellulose[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12):1733-1751.
doi: 10.1016/S1872-5813(21)60134-2 |
|
[16] |
BOUTIN O, FERRER M, LEDE J. Radiant flash pyrolysis of cellulose-evidence for the formation of short life time intermediate liquid species[J]. Journal of Analytical and Applied Pyrolysis, 1998, 47(1):13-31.
doi: 10.1016/S0165-2370(98)00088-6 |
[17] |
JONAS K, MUFTI A, SURYO P. Multi-distribution activation energy model on slow pyrolysis of cellulose and lignin in TGA/DSC[J]. Heliyon, 2021.DOI:10.1016/j.heliyon.2021.e07669.
doi: 10.1016/j.heliyon.2021.e07669 |
[18] | JIANG L, LUO J, XU F, et al. High yield production of levoglucosan via catalytic pyrolysis of cellulose at low temperature[J]. Fuel, 2022,323. |
[19] | 李三平, 王述洋, 孙雪, 等. 国内外生物质热解动力学模型的研究现状[J]. 生物质化学工程, 2013, 47(4):29-36. |
LI Sanping, WANG Shuyang, SUN Xue, et al. The domestic and abroad research status of biomass pyrolysis kinetics model[J]. Biomass Chemical Engineering, 2013, 47(4): 29-36. | |
[20] |
ZONG P, JIANG Y, TIAN Y. Pyrolysis behavior and product distributions of biomass six group components: Starch,cellulose, hemicellulose,lignin,protein and oil[J]. Energy Conversion and Management, 2020.DOI:10.1016/j.enconman.2020.112777.
doi: 10.1016/j.enconman.2020.112777 |
[21] |
METTLER M, PAULSEN A, VLACHOS D, et al. The chain length effect in pyrolysis:Bridging the gap between glucose and cellulose[J]. Green Chemistry, 2012, 14(5):1284-1288.
doi: 10.1039/c2gc35184f |
[22] |
LU Q, YANG X, DONG C, et al. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2):430-438.
doi: 10.1016/j.jaap.2011.08.006 |
[23] |
METTLER M, PAULSEN A, VLACHOS D G, et al. The chain length effect in pyrolysis:Bridging the gap between glucose and cellulose[J]. Green Chemistry, 2012, 14(5):1284-1288.
doi: 10.1039/c2gc35184f |
[24] |
FOWLES M. Black carbon sequestration as an alternative to bioenergy[J]. Biomass and Bioenergy, 2007, 31(6):426-432.
doi: 10.1016/j.biombioe.2007.01.012 |
[25] |
ROOSTA M, GHAEDI M, DANESHFAR A, et al. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology[J]. Ultrasonics Sonochemistry, 2014, 21(1):242-252.
doi: 10.1016/j.ultsonch.2013.05.014 pmid: 23856588 |
[26] | 周舒心, 范怀林, 胡勋. 生物质基碳材料制备及其在超级电容器电极材料中的应用[J/OL]. 综合智慧能源:1-12. [2023-02-27](2023-04-01). http://kns.cnki.net/kcms/detail/41.1461.TK.20230224.1133.004.html. |
ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors[J/OL]. Integrated Intelligent Energy:1-12. [2023-02-27](2023-04-01). http://kns.cnki.net/kcms/detail/41.1461.TK.20230224.1133.004.html. | |
[27] |
YUE L, XIA Q, WANG L, et al. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell[J]. Journal of Colloid And Interface Science, 2018, 511:259-267.
doi: 10.1016/j.jcis.2017.09.040 |
[28] | 付洁. 生物质热解转化机理及生物炭吸附应用研究[D]. 北京: 北京化工大学, 2022. |
FU Jie. Mechanism of biomass pyrolysis and application of biochar adsorbent[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
[29] | 朱克明, 王德超, 朱永峰, 等. 纤维素热解气催化提质制备呋喃类化合物研究[J]. 林产化学与工业, 2021, 41(1):85-92. |
ZHU Keming, WANG Dechao, ZHU Yongfeng, et al. Catalytic upgrading of cellulose pyrolysis vapor for furan compounds[J]. Chemistry and Industry of Forest Products, 2021, 41(1):85-92. | |
[30] | 项贤亮. 生物质低温定向热解制备酮类平台化合物的试验研究[D]. 镇江: 江苏大学, 2021. |
XIANG Xianliang. Experimental study on preparation of ketone platform compounds by low temperature directional pyrolysis of biomass[D]. Zhenjiang: Jiangsu University, 2021. | |
[31] | 李萧纹. 生物质热解气定向聚合制备多孔碳材料研究[D]. 南京: 东南大学, 2020. |
LI Xiaowen. Preparation of porous carbon materials by orientated polymerization of biomass pyrolysis gas[D]. Nanjing: Southeast University, 2020. | |
[32] | HUANG X, REN J, RAN J. et al. Recent advances in pyrolysis of cellulose to value-added chemicals[J]. Fuel Processing Technology, 2022:229-246. |
[33] |
DOBELE G, ROSSINSKAJA G, DIZHBITE T. et al. Application of catalysts for obtaining 1,6-anhydrosaccharides from cellulose and wood by fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2004, 74(1):401-405.
doi: 10.1016/j.jaap.2004.11.031 |
[34] |
LU Q, YE X, ZHANG Z, et al. Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42-/TiO2-Fe3O4[J]. Bioresour Technol, 2014, 171:10-15.
doi: 10.1016/j.biortech.2014.08.075 |
[35] |
KUDO S, ZHOU Z, YAMASAKI K, et al. Sulfonate ionic liquid as a stable and active catalyst for levoglucosenone production from saccharides via catalytic pyrolysis[J]. Catalysts, 2013, 3(4)757-773.
doi: 10.3390/catal3040757 |
[36] | CAO F, SCHWARTZ T, MCCLELLANG D, et al. Dehydration of cellulose to levoglucosenone using polar aprotic solvents[J]. Energy & Environmental Science, 2015, 8(6):1808-1815. |
[37] |
FABBRI D, TORRI C, MANCINI I. Pyrolysis of cellulose catalysed by nanopowder metal oxides:Production and characterisation of a chiral hydroxylactone and its role as building block[J]. Green Chemistry, 2007, 9(12):1374-1379.
doi: 10.1039/b707943e |
[38] |
SUI X, WANG Z, LIAO B, et al. Preparation of levoglucosenone through sulfuric acid promoted pyrolysis of bagasse at low temperature[J]. Bioresource Technology, 2012, 103(1):466-469.
doi: 10.1016/j.biortech.2011.10.010 |
[39] | FURNEAUX R, MASON J, MILLER I. A novel hydroxylactone from the Lewis acid catalysed pyrolysis of cellulose[J]. Journal of the Chemical Society Perkin Transactions, 1988(1):49-51. |
[40] |
WANG W, WANG M, HUANG J, et al. Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production[J]. Journal of the Energy Institute, 2019, 92(6):1997-2003.
doi: 10.1016/j.joei.2018.10.012 |
[41] |
苏银海, 张书平, 刘凌沁, 等. 活性炭催化热解纤维素协同制备酚类和合成气[J]. 化工学报, 2021, 72(10):5206-5217.
doi: 10.11949/0438-1157.20210416 |
SU Yinhai, ZHANG Shuping, LIU Lingqin, et al. Synergetic production of phenols and syngas from the catalytic pyrolysis of cellulose on activated carbon[J]. Chinese Journal of Chemical Engineering, 2021, 72(10):5206-5217. | |
[42] |
LIU S, CAO J, ZHAO X, et al. Effect of zeolite structure on light aromatics formation during upgrading of cellulose fast pyrolysis vapor[J]. Journal of the Energy Institute, 2019, 92(5):1567-1576.
doi: 10.1016/j.joei.2018.07.017 |
[43] |
WANG J, CAO J, ZHAO X, et al. Enhancement of light aromatics from catalytic fast pyrolysis of cellulose over bifunctional hierarchical HZSM-5 modified by hydrogen fluoride and nickel/hydrogen fluoride[J]. Bioresource Technology, 2019, 278:116-123.
doi: 10.1016/j.biortech.2019.01.059 |
[44] |
QIAO K, SHI X, ZHOU F, et al. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Applied Catalysis A, General, 2017, 547:274-282.
doi: 10.1016/j.apcata.2017.07.034 |
[45] | ZHENG A, ZHAO Z, CHANG S, et al. Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass[J]. Journal of Molecular Catalysis.A,Chemical, 2014:383-384. |
[46] |
MIHALCIK D, MULLEN C, AKWASI A. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(1):224-232.
doi: 10.1016/j.jaap.2011.06.001 |
[47] |
BRANCA C, BLASI C, GALGANO A. Pyrolysis of corncobs catalyzed by zinc chloride for furfural production[J]. Industrial & Engineering Chemistry Research, 2010, 49(20).9743-9752.
doi: 10.1021/ie101067v |
[48] |
LU Q, DONG C, ZHANG X, et al. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: Analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(2):204-212.
doi: 10.1016/j.jaap.2010.12.007 |
[49] |
BRANCA C, BLASI C, GALGANO A. Catalyst Screening for the Production of Furfural from corncob pyrolysis[J]. Energy & Fuels, 2012, 26(3),1520-1530.
doi: 10.1021/ef202038n |
[50] |
ZHANG H, LIU X, LU M, et al. Role of bronsted acid in selective production of furfural in biomass pyrolysis[J]. Bioresource Technology, 2014, 169(5):800-803.
doi: 10.1016/j.biortech.2014.07.053 |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
[3] | 苏盼盼, 王学涛, 邢利利, 李浩杰, 刘梦杰. 生物质预处理催化热解制备液体燃料研究进展[J]. 综合智慧能源, 2024, 46(3): 1-11. |
[4] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[5] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[6] | 何沭纬, 韩颖慧, 徐文斌, 张元勋, 单玉龙, 余运波. 不同能源策略下北京市私有机动车辆CO2排放系统仿真模拟[J]. 综合智慧能源, 2023, 45(8): 26-35. |
[7] | 刘天阳, 高亚静, 谢典, 赵良. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52. |
[8] | 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63. |
[9] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[10] | 王永真, 韩艺博, 韩恺, 韩俊涛, 宋阔, 张兰兰. 基于知识图谱的数据中心综合能源系统研究综述[J]. 综合智慧能源, 2023, 45(7): 1-10. |
[11] | 李宜哲, 王丹, 贾宏杰, 周天烁, 曹逸滔, 张帅, 刘佳委. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7): 22-29. |
[12] | 吴彤, 王守鑫, 程星星, 刘坤坤. 工业共生体系下生物质资源化利用的物质能量流分析[J]. 综合智慧能源, 2023, 45(7): 30-39. |
[13] | 刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65. |
[14] | 赵国涛, 钱国明, 孙艳兵, 丁泉, 朱海东. 碳逸会计在综合能源系统低碳性评价中的应用[J]. 综合智慧能源, 2023, 45(6): 73-80. |
[15] | 刘子祺, 苏婷婷, 何佳阳, 王裕. 基于多目标粒子群算法的配电网储能优化配置研究[J]. 综合智慧能源, 2023, 45(6): 9-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||