[1] |
OCHOA-BARRAGÁN R, PONCE-ORTEGA J M, TOVAR-FACIO J. Long-term energy transition planning: Integrating battery system degradation and replacement for sustainable power systems[J]. Sustainable Production and Consumption, 2023, 42: 335-350.
|
[2] |
LEAL FILHO W, AZEITEIRO U M, BALOGUN A L, et al. The influence of ecosystems services depletion to climate change adaptation efforts in Africa[J]. Science of the Total Environment, 2021, 779: 146414.
|
[3] |
MSIGWA G, IGHALO J O, YAP P S. Considerations on environmental, economic, and energy impacts of wind energy generation:Projections towards sustainability initiatives[J]. Science of the Total Environment, 2022, 849: 157755.
|
[4] |
赵建立, 向佳霓, 王隗东, 等. 考虑风电不确定性的数据中心平抑风电功率波动的调度方法[J]. 综合智慧能源, 2022, 44(11): 70-78.
doi: 10.3969/j.issn.2097-0706.2022.11.010
|
|
ZHAO Jianli, XIANG Jiani, WANG Weidong, et al. A scheduling method for suppressing wind power fluctuation of data centers considering wind power uncertainty[J]. Integrated Intelligent Energy, 2022, 44(11): 70-78.
doi: 10.3969/j.issn.2097-0706.2022.11.010
|
[5] |
MEENAL R, BINU D, RAMYA K C, et al. Weather forecasting for renewable energy system:A review[J]. Archives of Computational Methods in Engineering, 2022, 29(5): 2875-2891.
|
[6] |
WANG H, HAN S, LIU Y Q, et al. Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system[J]. Applied Energy, 2019, 237: 1-10.
|
[7] |
PEARRE N S, SWAN L G. Statistical approach for improved wind speed forecasting for wind power production[J]. Sustainable Energy Technologies and Assessments, 2018, 27: 180-191.
|
[8] |
ZHANG Y G, ZHAO Y A, KONG C H, et al. A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic[J]. Energy Conversion and Management, 2020, 203: 112254.
|
[9] |
LIU J P, WANG P, CHEN H Y, et al. A combination forecasting model based on hybrid interval multi-scale decomposition: Application to interval-valued carbon price forecasting[J]. Expert Systems with Applications, 2022, 191: 116267.
|
[10] |
ALY H H. A novel deep learning intelligent clustered hybrid models for wind speed and power forecasting[J]. Energy, 2020, 213: 118773.
|
[11] |
YIN X X, ZHAO X W. Big data driven multi-objective predictions for offshore wind farm based on machine learning algorithms[J]. Energy, 2019, 186: 115704.
|
[12] |
WANG Y, ZOU R M, LIU F, et al. A review of wind speed and wind power forecasting with deep neural networks[J]. Applied Energy, 2021, 304: 117766.
|
[13] |
SAYEED A, CHOI Y S, JUNG J, et al. A deep convolutional neural network model for improving WRF simulations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021.
|
[14] |
SAEED A, LI C S, GAN Z H, et al. A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution[J]. Energy, 2022, 238: 122012.
|
[15] |
LIU M D, DING L, BAI Y L. Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction[J]. Energy Conversion and Management, 2021, 233:113917.
|
[16] |
郑真, 朱峰, 马小丽, 等. 基于TL-LSTM的新能源功率短期预测[J]. 综合智慧能源, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005
|
|
ZHENG Zhen, ZHU Feng, MA Xiaoli, et al. Short-term new energy power prediction based on TL-LSTM[J]. Integrated Intelligent Energy, 2023, 45(1): 41-48.
doi: 10.3969/j.issn.2097-0706.2023.01.005
|
[17] |
WEI J Q, WU X J, YANG T M, et al. Ultra-short-term forecasting of wind power based on multi-task learning and LSTM[J]. International Journal of Electrical Power & Energy Systems, 2023, 149: 109073.
|
[18] |
XU L, OU Y X, CAI J J, et al. Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition[J]. Renewable Energy, 2023, 216: 119097.
|
[19] |
CHENG J M, LIANG RY, ZHAO L. DNN-based speech enhancement with self-attention on feature dimension[J]. Multimedia Tools and Applications, 2020, 79:32449-32470.
|
[20] |
KHODAYAR M, KAYNAK O, KHODAYAR M E. Rough deep neural architecture for short-term wind speed forecasting[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2770-2779.
|
[21] |
XIONG B R, MENG X Y, WANG R H, et al. Combined model for shor-term wind power prediction based on deep neural network and long short-term memory[J]. Journal of Physics: Conference Series, 2021, 1757(1): 012095.
|
[22] |
QURESHI A S, KHAN A, ZAMEER A, et al. Wind power prediction using deep neural network based meta regression and transfer learning[J]. Applied Soft Computing, 2017, 58: 742-755.
|
[23] |
MEDHAT S, ABDEL-GALIL H, ABOUTABL A E, et al. Iterative magnitude pruning-based light-version of AlexNet for skin cancer classification[J]. Neural Computing and Applications, 2024, 36(3): 1413-1428.
|
[24] |
ZHU H Y, SUN M Y, FU H H, et al. Training a seismogram discriminator based on ResNet[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(8):7076-7085.
|
[25] |
HUANG G, LIU Z, MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.
|
[26] |
ZHANG Q S, WANG X, WU Y N, et al. Interpretable CNNs for object classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(10): 3416-3431.
|
[27] |
IMANI M. Electrical load-temperature CNN for residential load forecasting[J]. Energy, 2021, 227: 120480.
|
[28] |
YAN B W, SHEN R F, LI K, et al. Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations[J]. Energy, 2023, 284: 128418.
|
[29] |
栗然, 罗东晖, 李鹏程, 等. 基于宽度和深度模型以及残差网络的综合能源负荷短期预测[J]. 华北电力大学学报(自然科学版), 2023, 50(6): 21-30.
|
|
SU Ran, LUO Donghui, LI Pengcheng, et al. Comprehensive energy load short-term forecasting based on wide&deep and ResNet network framework[J]. Journal of North China Electric Power University (Natural Science Edition), 2023, 50(6): 21-30.
|
[30] |
余珊, 温蜜, 顾春华, 等. 基于VMD-DenseNet的短期电力负荷预测[J]. 计算机应用与软件, 2023, 40(7): 34-40, 70.
|
|
YU Shan, WEN Mi, GU Chunhua, et al. Short-term electric load forecasting based on VMD-DenseNet[J]. Computer Applications and Software, 2023, 40(7): 34-40, 70.
|
[31] |
SILVA E D P, SALLES J L F, FARDIN J F, et al. Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data[J]. Applied Energy, 2020, 278: 115581.
|
[32] |
LI T, JIAO W C, WANG L N, et al. Automatic DenseNet sparsification[J]. IEEE Access, 2020, 8: 62561-62571.
|
[33] |
SILVA E D P, SALLES J L F, FARDIN J F, et al. Measured and forecasted weather and power dataset for management of an island and grid-connected microgrid[J]. Data in Brief, 2021, 39: 107513.
|