综合智慧能源

• •    

基于CNN-BiLSTM-RF-KDE的负荷预测在综合能源系统调度中的应用研究

窦翔, 李卓群, 张哲, 温鑫, 赵勃, 韩燕, 仲声   

  1. 兰州交通大学新能源与动力工程学院, 甘肃 730070 中国
    兰州交通大学经济管理学院, 甘肃 730070 中国
  • 收稿日期:2025-03-31 修回日期:2025-04-30
  • 基金资助:
    2024年度甘肃省社科规划重点委托课题(2024ZD002)

Application of CNN-BiLSTM-RF-KDE-Based Load Forecasting in Integrated Energy System Scheduling

Dou Xiang, Li Zhuoqun, Zhang Zhe, Wen Xin, Zhao Bo, Han Yan, Zhong Sheng   

  1. School of New Energy and Power Engineering, Lanzhou Jiaotong University 730070, China
    School of Economics and Management, Lanzhou Jiaotong University 730070, China
  • Received:2025-03-31 Revised:2025-04-30

摘要: 综合能源系统负荷预测存在多源异构数据融合与不确定性量化机制不足的问题。本文提出一种CNN-BiLSTM-RF-KDE混合模型,利用卷积神经网络提取负荷数据局部特征,双向长短期记忆网络捕捉双向时序依赖,随机森林处理高维非线性关系,核密度估计量化预测不确定性,形成完整流程。同时构建电-热-气多能流耦合模型,分析不同碳价区间对调度策略的影响。算例分析表明,该模型在电、热负荷预测中精度较高。训练集上,电负荷预测的决定系数为0.93,热负荷预测的决定系数为0.96。测试集上,电负荷预测的决定系数为0.79,热负荷预测的决定系数为0.84。预测出的各设备发电或发热量与各设备发电或发热量均值趋势高度吻合,运用本模型可得出更靠近准确值的负荷量,将其作为基础数据可对综合能源系统进行更可靠地分析与调度。

关键词: 卷积神经网络, 双向长短期记忆网络, 综合能源系统, 负荷预测, 核密度估计, 随机森林

Abstract: Load forecasting in integrated energy systems faces challenges such as insufficient multi-source heterogeneous data fusion and inadequate uncertainty quantification mechanisms. This paper proposes a hybrid CNN-BiLSTM-RF-KDE model, which employs a Convolutional Neural Network to extract local features from load data, a Bidirectional Long Short-Term Memory network to capture bidirectional temporal dependencies, a Random Forest to handle high-dimensional nonlinear relationships, and Kernel Density Estimation to quantify prediction uncertainty, forming a comprehensive workflow. Additionally, an electricity-heat-gas multi-energy flow coupling model is constructed to analyze the impact of different carbon price intervals on scheduling strategies. Case studies demonstrate the high accuracy of the proposed model in electricity and heat load forecasting. On the training set, the coefficient of determination for electricity and heat load predictions reaches 0.93 and 0.96, respectively. On the test set, the values are 0.79 for electricity and 0.84 for heat. The predicted power generation or heat output of each device shows high consistency with the mean trend of equipment operation. By applying this model, more accurate load values closer to actual measurements can be obtained. These refined load values serve as fundamental data, enabling more reliable analysis and scheduling for integrated energy systems.

Key words: Convolutional Neural Network, Bidirectional Long Short-Term Memory, Integrated energy system, Load Forecasting, Kernel Density Estimation, Random Forest