综合智慧能源 ›› 2025, Vol. 47 ›› Issue (9): 60-70.doi: 10.3969/j.issn.2097-0706.2025.09.007

• 新能源出力预测与不确定性量化 • 上一篇    下一篇

基于CNN-BiLSTM-RF-KDE的综合能源系统负荷预测

窦翔a(), 李卓群a,*(), 张哲a(), 温鑫a(), 赵勃a(), 韩燕b(), 仲声b()   

  1. 兰州交通大学 a.新能源与动力工程学院; b.经济管理学院,兰州 730070
  • 收稿日期:2025-03-31 修回日期:2025-04-30 出版日期:2025-09-25
  • 通讯作者: *李卓群(1983),男,副教授,博士,从事综合能源系统、新能源发电技术与功率预测、新能源场站的微气象学、能源转型背景下的碳循环与气候变化等方面的研究,zhuoqunli@mail.lzjtu.cn
  • 作者简介:窦翔(2005),男,从事新能源科学与工程方面的研究,dx3184392411www@163.com
    张哲(2005),男,从事新能源科学与工程方面的研究,gaodiaodejianmo@qq.com
    温鑫(2005),男,从事新能源科学与工程方面的研究,20233607120@stu.lzjtu.edu.cn
    赵勃(2000),男,硕士生,从事基于机器视觉的光伏沙尘识别及发电效率预测等方面的研究,15109647970@163.com
    韩燕(1984),女,教授,博士,从事区域经济学方面的研究,yingyuhy@163.com
    仲声(1990),男,副教授,博士,从事能源经济与能源政策方面的研究,wywybz@163.com
  • 基金资助:
    甘肃省社科规划重点委托课题(2024ZD002)

Load forecasting for integrated energy systems based on CNN-BiLSTM-RF-KDE

DOU Xianga(), LI Zhuoquna,*(), ZHANG Zhea(), WEN Xina(), ZHAO Boa(), HAN Yanb(), ZHONG Shengb()   

  1. a. School of New Energy and Power Engineering; b.School of Economics and Management,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Received:2025-03-31 Revised:2025-04-30 Published:2025-09-25
  • Supported by:
    Key Commissioned Project of Gansu Provincial Social Science Planning(2024ZD002)

摘要:

针对综合能源系统负荷预测存在的多源异构数据融合与不确定性量化机制不足问题,利用卷积神经网络(CNN)提取负荷数据局部特征,通过双向长短期记忆网络(BiLSTM)捕捉双向时序依赖,采用随机森林(RF)处理高维非线性关系并借助核密度估计(KDE)量化预测不确定性,从而建立CNN-BiLSTM-RF-KDE混合模型;同时,构建电-热-气多能流耦合模型,分析不同碳价区间对调度策略的影响。算例分析显示:训练集上电、热负荷预测的决定系数分别为0.93,0.96;测试集上电、热负荷预测的决定系数分别为0.79,0.84。预测出的各设备发电、发热量与均值趋势高度吻合,表明运用该模型能够得出更接近准确值的负荷量,以此为基础数据,可以对综合能源系统进行更为可靠的分析与调度。

关键词: 综合能源系统, 负荷预测, 卷积神经网络, 双向长短期记忆网络, 核密度估计, 随机森林, 碳价

Abstract:

To address the challenges of insufficient multi-source heterogeneous data fusion and uncertainty quantification in load forecasting for integrated energy systems, a hybrid CNN-BiLSTM-RF-KDE model was proposed. The model utilized convolutional neural network(CNN) to extract local features of load data, bidirectional long short-term memory (BiLSTM) to capture bidirectional temporal dependencies, random forest(RF) to handle high-dimensional nonlinear relationships, and kernel density estimation(KDE) to quantify prediction uncertainty. Additionally, an electricity-heat-gas multi-energy flow coupling model was established to analyze the influence of different carbon price intervals on scheduling strategies. Case studies demonstrated that the coefficient of determination(R²) for electrical and heating load forecasting reached 0.93 and 0.96 on the training set, and 0.79 and 0.84 on the test set, respectively. The predicted power generation and heat output of each device closely aligned with the mean trend, indicating that the model provided more accurate load predictions. Based on this data, more reliable analysis and scheduling of integrated energy systems could be achieved.

Key words: integrated energy system, load forecasting, convolutional neural network, bidirectional long short-term memory network, kernel density estimation, random forest, carbon price

中图分类号: