综合智慧能源

• •    

光伏阵列数学建模与健康状态评估方法综述

纪方旭, 苏营, 丁坤, 吴海飞, 陈翔, 何尧玺, 张经炜   

  1. 长电新能有限责任公司, 湖北 430000 中国
    中国三峡集团科学技术研究院, 北京 101100 中国
    河海大学机电工程学院, 江苏 213022 中国
  • 收稿日期:2025-04-21 修回日期:2025-06-25
  • 基金资助:
    中国长江电力股份有限公司(Z342302011); 工业部与信息技术物联网项目(Y202101072)

Review of Mathematical Modeling and Health Status Evaluation Methods for Photovoltaic Arrays

  1. , 430000, China
    , 101100, China
    , 213022, China
  • Received:2025-04-21 Revised:2025-06-25
  • Supported by:
    China Yangtze Power Company Limited(Z342302011); Ministry of Industry and Information Technology IoT Project(Y202101072)

摘要: 本文针对光伏阵列的健康运维需求,系统阐述光伏建模、参数辨识、特征提取及健康评估方法的研究现状。首先,分析等效电路模型的建模适用场景,对比基于Simulink的电路仿真、数值模拟和神经网络黑箱模型的优缺点。然后,参数辨识方法重点探讨解析法与元启发式算法的互补性,提出组合法通过解析初值优化迭代过程,可兼顾计算速度与精度。其次,对比统计特征、信号分解及深度学习的差异化表征能力,强调I-V曲线转换对提升特征鲁棒性的必要性。最后,提出基于光伏能效性能比、模糊评判的五级健康状态划分体系,阐明健康评估与故障诊断的逻辑关系。通过对以上现有技术体系的系统梳理,为高效精准的光伏阵列状态监测与智能运维方案制定提供理论支撑。

关键词: 光伏阵列, 数学建模, 参数辨识, 特征提取, 健康评估, 故障诊断

Abstract: This paper addresses the health operation and maintenance needs of PV arrays and systematically describes the current research status of PV modelling, parameter identification, feature extraction and health status evaluation method. First, the modelling application scenarios of equivalent circuit models are analysed to compare the advantages and disadvantages of Simulink-based circuit simulation, numerical simulation and neural network black-box models. Then, the parameter identification method focuses on the complementarity between the analytical method and the meta-heuristic algorithm and proposes that the combined method optimizes the iterative process by analysing the initial value, which can consider the computational speed and accuracy. Next, the differentiated characterization capabilities of statistical features, signal decomposition and deep learning are compared to emphasize the necessity of I-V curve transformation to enhance feature robustness. Finally, the five-level health state classification system based on PV energy efficiency performance ratio and fuzzy judgment is proposed to clarify the logical relationship between health assessment and fault diagnosis. Through the systematic sorting of the above existing technical systems, we provide theoretical support for efficient and accurate PV array condition monitoring and intelligent operation and maintenance program development.

Key words: Photovoltaic array, Mathematical modeling, Parameter identification, Feature extraction, Health assessment, Fault diagnosis