综合智慧能源

• •    

基于SC-SAC算法的REHMIS-IES优化调度策略

潘雷, 丁云飞, 庞毅, 王宇璇, 陈建伟, 高瑞, 张立阳   

  1. 天津城建大学控制与机械工程学院, 天津 300380 中国
  • 收稿日期:2025-08-12 修回日期:2025-10-19

Optimal scheduling strategy for REHMIS-IES based on SC-SAC algorithm

Pan Lei, Ding Yunfei, Pang Yi, Wang Yuxuan, Chen Jianwei, Gao Rui, Zhang Liyang   

  1. School of Control and Mechanical Engineering, Tianjin Chengjian University 300380, China
  • Received:2025-08-12 Revised:2025-10-19

摘要: 可再生能源制氢并进一步合成甲醇是化工行业实现绿氢替代的有效途径,其关键设施为可再生能源-制氢-制甲醇一体站(REHMIS)。为了同时满足REHMIS的甲醇负荷需求及其配套建筑的多能源需求,本研究设计了新型综合能源系统拓扑(REHMIS-IES)。并且为获得REHMIS-IES高效运行策略,本文提出了一种基于严格约束的SAC算法的执行框架(SC-SAC)。在建模方法上,将所建数学模型转化为马尔可夫决策过程,同时引入状态约束机制(SCM)以避免储能系统状态出现剧烈波动。在SC-SAC算法的执行阶段,将训练后的Q网络与动作约束转化成混合整数线性规划(MILP)模型,以保证调度决策满足各项运行约束。多场景仿真结果表明,所提系统在保障多能需求的同时可有效降低运行成本;与其他深度强化学习算法相比,SC-SAC算法可使系统能量不平衡度降低不少于16.2%,运行成本至少下降11.7%。

关键词: 深度强化学习, 优化调度, 综合能源系统, 软演员-评论家算法, 可再生能源-制氢-制甲醇一体化站

Abstract: Producing hydrogen from renewable energy and synthesizing it into methanol is an effective approach for green hydrogen substitution in the chemical industry. The core facility of this pathway is the renewable energy hydrogen methanol integrated station (REHMIS). This study designs a novel renewable energy hydrogen methanol integrated station integrated energy system (REHMIS-IES) topology, which satisfies both the methanol demand of REHMIS and the multi-energy demand of its supporting buildings. This study proposes a strict-constraint soft actor-critic (SC-SAC) framework to develop an efficient operating strategy for the REHMIS-IES. The mathematical model is formulated as a Markov decision process, and a state constraint mechanism (SCM) is introduced to prevent large fluctuations in the energy storage system. The SC-SAC algorithm embeds the trained Q-network and action constraints into a mixed-integer linear programming (MILP) model, ensuring that scheduling decisions satisfy all operational constraints. Simulation results under multiple scenarios show that the proposed system can effectively reduce operating costs while meeting multi-energy demands. The SC-SAC algorithm reduces system energy imbalance by at least 16.2% and operating costs by no less than 11.7%, outperforming other deep reinforcement learning algorithms.

Key words: Deep reinforcement learning, Scheduling, Integrated energy system, Soft actor-critic, Renewable energy-hydrogen-methanol integrated station