Huadian Technology ›› 2021, Vol. 43 ›› Issue (10): 80-85.doi: 10.3969/j.issn.1674-1951.2021.10.010
• Research and Development • Previous Articles Next Articles
Received:
2021-04-27
Revised:
2021-06-10
Published:
2021-10-25
CLC Number:
WEI Ruhua, WANG Yifeng. Design,analysis and application of large temperature difference cooling systems[J]. Huadian Technology, 2021, 43(10): 80-85.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.10.010
Tab.1
Evaporation temperature under different temperature difference and water supply temperature ℃
温差 | 供水温度 | |||||||
---|---|---|---|---|---|---|---|---|
3.00 | 4.00 | 5.00 | 6.00 | 7.00 | 8.00 | 9.00 | 10.00 | |
5.00 | 1.12 | 2.12 | 3.12 | 4.12 | 5.12 | 6.12 | 7.12 | 8.12 |
6.00 | 0.90 | 1.90 | 2.90 | 3.90 | 4.90 | 5.90 | 6.90 | 7.90 |
7.00 | 0.70 | 1.70 | 2.70 | 3.70 | 4.70 | 5.70 | 6.70 | 7.70 |
8.00 | 0.52 | 1.52 | 2.52 | 3.52 | 4.52 | 5.52 | 6.52 | 7.52 |
9.00 | 0.34 | 1.34 | 2.34 | 3.34 | 4.34 | 5.34 | 6.34 | 7.34 |
10.00 | 0.17 | 1.17 | 2.17 | 3.17 | 4.17 | 5.17 | 6.17 | 7.17 |
Tab.3
Operational energy consumption of the large temperature difference cooling system and conventional cooling system
负荷分布/% | 天数/d | 常规供冷系统能耗/(kW·h) | 大温差供冷系统能耗/(kW·h) | ||
---|---|---|---|---|---|
冷水机组 | 冷冻水泵 | 冷水机组 | 冷冻水泵 | ||
100.0 | 25 | 4 824 831 | 804 762 | 4 997 834 | 253 500 |
75.0 | 55 | 7 234 975 | 1 327 857 | 7 494 396 | 418 275 |
50.0 | 70 | 4 981 079 | 1 126 667 | 5 159 683 | 354 900 |
25.0 | 30 | 1 004 919 | 241 429 | 1 040 952 | 76 050 |
年运行总能耗 | 21 546 519 | 19 795 590 | |||
年节约能耗 | 1 750 929 |
[1] |
CHEN S, ZHU T, GAN Z X, et al. Optimization of operation strategies for a combined cooling,heating and power system based on adiabatic compressed air energy storage[J]. Journal of Thermal Science, 2020, 29(5): 1135-1148.
doi: 10.1007/s11630-020-1170-0 |
[2] |
FENG L J, DAI X Y, MO J R, et al. Feasibility analysis of the operation strategies for combined cooling,heating and power systems(CCHP)based on the energy-matching regime[J]. Journal of Thermal Science, 2020, 29(5): 1149-1164.
doi: 10.1007/s11630-020-1314-2 |
[3] |
SHAO W, CHEN Q, HE K L, et al. Operation optimization of liquid cooling systems in data centers by the heat current method and artificial neural network[J]. Journal of Thermal Science, 2020, 29(4): 1063-1075.
doi: 10.1007/s11630-020-1283-5 |
[4] |
SHAO Y Y, CHEN B M, XIAO H M, et al. Discussion on performance evaluation method of distributed combined cooling,heating,and power system[J]. Journal of Thermal Science, 2019, 28(6): 1212-1220.
doi: 10.1007/s11630-019-1219-0 |
[5] |
HAO X J, WANG T. Simulation analysis of factors influencing chiller EER[J]. Journal of Thermal Science, 2014, 23(3): 285-289.
doi: 10.1007/s11630-014-0708-4 |
[6] | 孙钦, 董凯军, 苏林, 等. 超高层建筑大温差温湿度独立控制动态冰蓄冷系统分析[J]. 低温工程, 2019(4): 31-37. |
SUN Qin, DONG Kaiun, SU Lin, et al. Analysis of dynamic ice thermal storage air conditioning system with large temperature difference and independent temperature-humidity control for super high-rise building[J]. Cryogenics, 2019(4): 31-37. | |
[7] | 宣晨晨, 祝健, 李跃萍, 等. 冷冻水大温差的节能性分析及应用[J]. 建筑热能通风空调, 2011, 30(1): 66-69. |
XUAN Chenchen, ZHU Jian, LI Yueping, et al. Energy conservation and application of chilled water with large temperature difference[J]. Building Energy& Environment, 2011, 30(1): 66-69. | |
[8] | 杨光. 中央空调大温差系统应用及节能设计分析[J]. 绿色建筑, 2013, 5(6): 40-42. |
YANG Guang. The application of central air-conditioning system with large temperature difference and its analysis of energy saving design[J]. Green Building, 2013, 5(6): 40-42. | |
[9] | 茅柳豪. 新型空调大温差水系统设计及应用研究[D]. 大连:大连海洋大学, 2017. |
[10] | 高宏奎. 区域供冷系统关键参数的研究[D]. 重庆:重庆大学, 2014. |
[11] | 吴海平. 区域供冷系统冷冻水供/回水温差优化研究[D]. 长沙:湖南大学, 2013. |
[12] | 蒋辉华. 大温差水蓄冷技术应用及经济性分析[J]. 节能, 2018, 37(8): 16-20. |
JIANG Huihua. Application and economic analysis of large temperature difference water storage technology[J]. Energy Conservation, 2018, 37(8): 16-20. | |
[13] | 胡晨炯. 从广州地铁五号线集中供冷系统浅谈远距离大温差供冷系统[J]. 建设科技, 2012(12): 90-91. |
[14] |
WANG S W. Dynamic simulation of a building entral chilling system and evaluation of EMCS on-line control strategies[J]. Building and Environment, 1998, 33(1): 1-20.
doi: 10.1016/S0360-1323(97)00019-X |
[15] | 周亚素, 陈沛霖. 空调冷冻水系统大温差设计的能耗分析[J]. 建筑热能通风空调, 1999(2): 18-19. |
ZHOU Yasu, CHEN Peilin. Analysis on energy consumption of large temperature difference design in air conditioning chilled water system[J]. Building Energy & Environment, 1999(2): 18-19. | |
[16] | 于丹. 空调冷冻水系统大温差设计的影响及能耗分析[D]. 哈尔滨:哈尔滨工业大学. 2001. |
[17] | 于丹, 陆亚俊, 曹勇. 冷冻水大温差对风机盘管性能影响的研究[J]. 制冷空调与电力机械, 2004(3): 16-17,52. |
YU Dan, LU Yajun, CAO Yong. Influence of large temperature difference chilled water on fan coil[J]. Refrigeration,Air Conditioning & Electric Power Machinery, 2004(3): 16-17,52. | |
[18] | 陈旭, 张光玉. 冷冻水大温差末端——风机盘管机组串联方案[J]. 制冷与空调, 2019, 19(10): 65-70. |
CHEN Xu, ZHANG Guangyu. Terminal of chilled water with large temperature difference——Solution of series-connection fan coil unit[J]. Refrigeration and Air-Conditioning, 2019, 19(10): 65-70. | |
[19] | 陈卉, 刘颖, 赵龙生. 楼宇型分布式能源系统在数据中心的应用[J]. 华电技术, 2021, 43(3): 76-81. |
CHEN Hui, LIU Ying, ZHAO Longsheng. Application of building-type distributed energy systems for data centers[J]. Huadian Technology, 2021, 43(3): 76-81. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[3] | WU Xueqiong, XIA Dong. Review on intelligent planning and decision-making technology for the new active distribution network [J]. Integrated Intelligent Energy, 2023, 45(11): 20-26. |
[4] | YU Xiaobao, ZHAO Wenjing, SUN Yixin. Integrated energy system operation optimization model considering double uncertainties [J]. Integrated Intelligent Energy, 2023, 45(10): 10-17. |
[5] | WEI Yanping, WANG Jun, LI Nanfan, SHI Changli. Prediction model of stochastic power in industrial parks based on Markov chain [J]. Integrated Intelligent Energy, 2023, 45(1): 14-22. |
[6] | JIANG Ting, ZHAO Yajiao. Carbon emission reduction analysis for gas-based distributed integrated energy systems [J]. Integrated Intelligent Energy, 2022, 44(9): 27-32. |
[7] | YE Zhaonian, ZHAO Changlu, WANG Yongzhen, HAN Kai, LIU Chaofan, HAN Juntao. Dual-objective optimization of energy networks with shared energy storage based on Nash bargaining [J]. Integrated Intelligent Energy, 2022, 44(7): 40-48. |
[8] | ZHAO Jing, XING Zheng, HUANG Baole, LI Peng, ZHANG Pan, ZHANG Tingyu. Research on innovative business models and development strategies of integrated energy services for power generation companies [J]. Integrated Intelligent Energy, 2022, 44(3): 17-22. |
[9] | ZHANG Kaijie, DING Guofeng, WEN Ming, HUI Hongxun, DING Yi, HE Min, CHU Jiefeng, XIE Kang, YU Chutian, ZHANG Lijun. Review of optimal dispatching technology and market mechanism design for virtual power plants [J]. Integrated Intelligent Energy, 2022, 44(2): 60-72. |
[10] | HOU Luyang, GE Leijiao, WANG Biao, WANG Xuanyuan, XU Lianming, WANG Li. Research on the integrated energy system and the electricity market towards new prosumers [J]. Integrated Intelligent Energy, 2022, 44(12): 40-48. |
[11] | ZHOU Chengwei, LI Peng, YU Bin, YU Tianyang, MENG Wei. Optimal configuration for energy storage system capacity of wind-solar-storage microgrid [J]. Integrated Intelligent Energy, 2022, 44(12): 56-61. |
[12] | WANG Yi, YANG Zhiwei, WU Po, LIU Mingyang, PEI Jiecai, LI Chunlei. State estimation for the distribution network with high-proportion distributed photovoltaic energy [J]. Integrated Intelligent Energy, 2022, 44(10): 12-18. |
[13] | FENG Lejun, FU Zhihao, LIU Feng, GONG Yutong, LI Yimin, HAN Dongjiang, SUI Jun. Study on the influence of technical and economic factors on the economy of a natural gas distributed energy system [J]. Integrated Intelligent Energy, 2022, 44(10): 65-70. |
[14] | YAO Zhehao, ZHENG Puyan, YUAN Yanzhou. Operation optimization of dual-source distributed energy supply systems based on two-level strategy [J]. Integrated Intelligent Energy, 2022, 44(1): 56-62. |
[15] | ZHAO Dazhou, WANG Mingxiang, RUAN Huifeng, GU Jing, WANG Mingxiao. Simulation and optimization for Urea-SCR system of the natural gas internal combustion engine in a distributed energy station [J]. Huadian Technology, 2021, 43(5): 45-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||